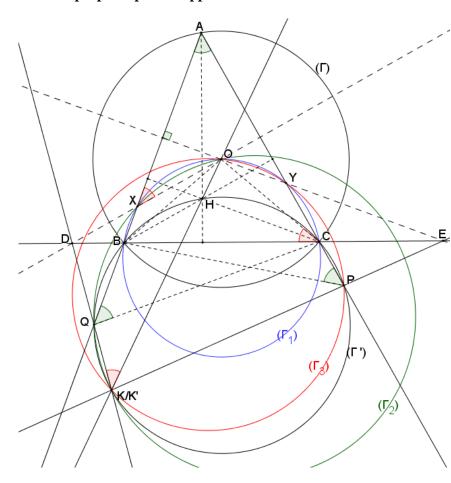
Problema n° 894

Sea ABC un triángulo acutángulo con AC>AB>BC. Las mediatrices de AC y AB intersecan a la recta BC en D y E, respectivamente.

Sean P y Q puntos distintos de A sobre las rectas AC y AB, respectivamente, tales que AB=BP, y AC=CQ, y sea K la intersección de las rectas EP y DQ. Sea M el punto medio de BC. Demostrar que <DKA=<EKM.

XXXIII Olimpiada Iberoamericana de Matemáticas (2018) (La Rábida y Monte Gordo)

Solution proposée par Philippe Fondanaiche



Soient:

O le centre du cercle (Γ) circonscrit au triangle ABC,

H l'orthocentre de ce même triangle,

X le point d'intersection de la médiatrice du côté AC avec le côté AB,

Y l'homologue de X sur le côté AC.

Comme AC > AB > BC les points X et Y sont respectivement à l'intérieur des côtés AB et AC.

Lemme n°1: les points O,H et K sont alignés.

Par construction les triangles ABP et ACQ sont isocèles.

D'où \angle APB = \angle AQC = \angle BAC = 180° - \angle BHC. Les cinq points B,H,C,P,Q sont sur un même cercle (Γ ') qui est le symétrique de (Γ) par rapport à la droite [BC].

Soit K' le point d'intersection de la droite [OH] avec le cercle (Γ ').

On a $\angle AXO = 90^{\circ} - \angle BAC$ et $\angle BCO = (180^{\circ} - \angle BOC)/2 = 90^{\circ} - \angle BAC$.Les quatre points B,C,X et O sont sur un même cercle (Γ_1) tracé en bleu.

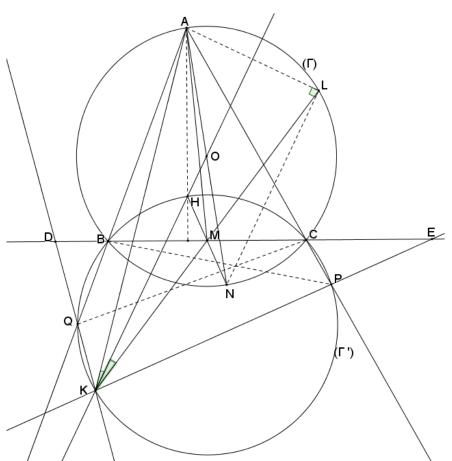
Par ailleurs $\angle HK'Q = \angle HCQ = 90^{\circ} - \angle AQC = 90^{\circ} - \angle BAC$. Les quatre points Q,K',O et X sont sur un même cercle (Γ_2) tracé en vert.

Dès lors, la droite [BC] est l'axe radical des cercles (Γ') et (Γ_1), la droite [OX] est l'axe radical des cercles (Γ_1) et (Γ_2) et la droite [QK'] est l'axe radical des cercles (Γ') et (Γ_2). Le point D à l'intersection des droites [BC] et [OX] est le centre radical des trois cercles (Γ'), (Γ_1) et (Γ_2) et le point K' est donc sur la droite [DQ].

De la même manière on démontre que les quatre points B,C,Y et O sur un même cercle (Γ_3) et que le point E est le centre radical des trois cercles (Γ'), (Γ_1) et (Γ_3).Le point K' à la fois sur les droites [DQ] et [EP] est confondu avec le point K. Les trois points O,H et K sont alignés.

Corollaire: la droite [OK] est la bissectrice intérieure de l'angle ∠DKE

On a \angle HBP = 90° - \angle APB = 90° - \angle BAC = \angle HCQ. Le point H est le milieu de l'arc PQ qui ne contient pas le point K et la droite HK est la bissectrice de l'angle \angle PKQ, c'est à dire de l'angle \angle DKE.



Lemme n°2 la droite [OK] est la bissectrice intérieure de l'angle ∠AKM

Comme les cercles (Γ) et (Γ ') sont symétriques par rapport à la droite [BC], la droite [KM] rencontre le cercle (Γ) en un point L symétrique de K par rapport au milieu M de BC tandis que le droite [HM] rencontre (Γ) en un point N symétrique de H par rapport à M. Le quadrilatère KHLN est alors un parallélogramme et la droite [LN] est parallèle à la droite [OK]. Or il est bien connu que dans tout triangle, le symétrique de l'orthocentre par rapport au milieu d'un côté est diamétralement opposé au sommet opposé à ce côté. Le segment AN est donc un diamètre de (Γ) et \angle ALN = 90°. La droite [OK] qui passe par O centre de (Γ) est médiatrice de la corde AL. C'est en même temps la bissectrice de l'angle \angle AKL, c'est à dire de l'angle \angle AKM.

E Conclusion

 $\angle DKA = \angle DKO - \angle AKO = EKO - \angle MKO = \angle EKM. C.q.f.d.$