Problema n° 897

Beade, C. (2018): Comunicación personal.

Dado un triángulo ABC, proyectamos el vértice A sobre las bisectrices (interior y exterior) de B (y de C) obteniendo, respectivamente los 4 puntos Pab, Qab, Pac y Qac . Repitiendo esta operación para los vértices B y C resultarían 8 puntos más, Pba, Qba, Pbc y Qbc (proyectando B) y Pca, Qca, Pcb y Qcb (proyectando C). Nombremos también a los incírculos como Exa, Exb, Exc e In

Demostrar:

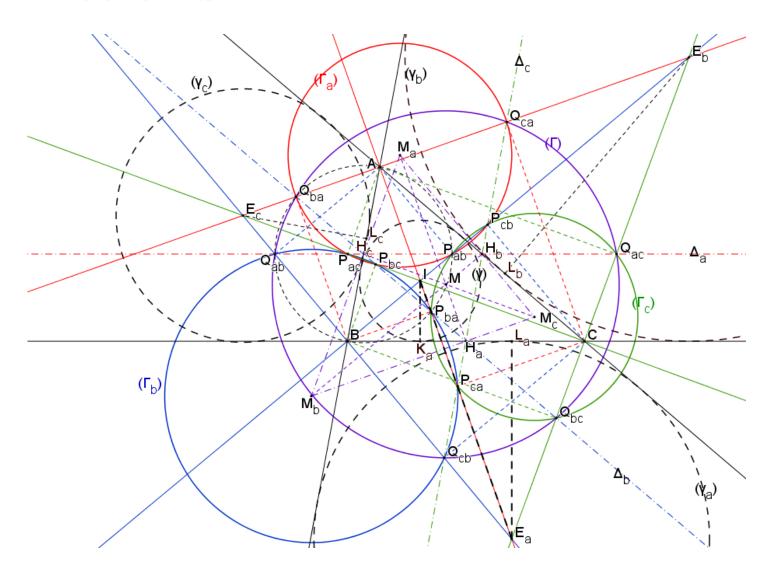
A. Estos 12 puntos se pueden agrupar en 4 series concílicas de 6 puntos: cma:PabPacPcbPbcQcaQba, cmb:PbcPbaPacPcaQabQcb, cmc:PcaPcbPbaPabQacQbc y cm:QabQacQbaQbcQcaQcb.

B. Cada uno de los cuatro círculos es ortogonal a los tres círculos escogidos entre el círculo inscrito y los tres círculos exinscritos del triángulo ABC.

Así, Cm corta ortogonalmente los tres círculos exinscritos de centros Exa, Exb y Exc ... Cma corta ortogonalmente el círculo inscrito de centro In y los dos círculos exinscritos de centros Exb y Exc etc...

C. Si Ma, Mb, Mc y M son sus centros, estos forman un sistema ortogonal y además los lados (o prolongaciones) de cualquier triangulo con esos vértices corta al ABC en los puntos medios de sus lados.

Solution proposée par Philippe Fondanaiche



Lemme n°1: les projections du sommet A d'un triangle ABC sur les bissectrices intérieures et extérieures des angles en B et C sont alignées sur la droite paralléle au côté BC qui passe par les milieux des côtés AB et AC. En d'autres termes, si l'on désigne par H_b et H_c les milieux respectifs des côtés AB et AC, avec les notations de l'énoncé, les six points P_{ab} , Q_{ab} , P_{ac} , Q_{ac} , H_b et H_c sont alignés sur une même droite Δ_a .

Démonstration: Les bissectrices intérieure et extérieure de l'angle en B sont perpendiculaires entre elles. Les quatre points A, P_{ab} , B et Q_{ab} sont les sommets d'un rectangle dont les deux diagonales AB et $P_{ab}Q_{ab}$ se coupent

en leur milieu H_c.

D'autre part $\angle Q_{ab}P_{ab}B = \angle ABP_{ab} = \angle CBP_{ab}$. La doite $P_{ab}Q_{ab}$ est donc paralléle au côté BC.

De la même façon, on démontre que la droite $P_{ac}Q_{ac}$ passe par le point H_b du côté AC et est parallèle au côté BC.

Corollaire: les six points P_{bc} , Q_{bc} , P_{ba} , Q_{ba} , H_c et H_a ainsi que les six points P_{ca} , Q_{ca} , P_{cb} , Q_{cb} , H_a et H_b sont alignés sur les droites Δ_b et Δ_c parallèles aux côtés CA et AB et passant par les milieux des côtés BC et BA d'un part, CA et CB d'autre part.

Question A

Lemme n°2: les quatre points P_{ab},P_{bc},P_{ac} et P_{cb} sont cocycliques.

Comme P_{bc} et P_{cb} sont respectivement les projections de B et de C sur la bissectrice de l'angle en C et sur la bissectrice de l'angle en B, les quatre points B,C, P_{cb} et P_{bc} sont cocycliques.

 $\begin{array}{l} \text{Donc } \angle P_{bc}P_{cb}P_{ab} = \angle \ P_{bc}P_{cb}B = \angle P_{bc}CB = \angle P_{ac}CB = \angle CP_{ac}P_{ab} \text{ (d'après le lemme } n^\circ 1) \\ \text{D'où } \angle P_{bc}P_{cb}P_{ab} = \angle P_{bc}P_{ac}P_{ab}. \end{array}$

Lemme n°3: les quatre points P_{ab} , P_{bc} , P_{ac} et Q_{ba} sont cocycliques.

 P_{ab} et Q_{ab} d'une part, P_{ba} et Q_{ba} d'autre part ,étant respectivement les projections de A et de B sur les bissectrices intérieures et extérieures de l'angle en B et en A, les six points $A, P_{ab}, P_{ba}, B, Q_{ab}$ et Q_{ba} sont cocycliques.

D'où $\angle P_{ab}Q_{ba}P_{bc} = \angle P_{ab}Q_{ba}P_{ba} = P_{ab}BP_{ba} = 90^{\circ} - \angle BAI - \angle ABI = \angle BCI = \angle BCP_{ac} = \angle P_{ab}P_{ac}P_{bc}$ (d'après le lemme n°1).

Corollaire: on substitue le point C au point B et on déduit que les quatre points P_{ab} , P_{bc} , P_{ac} et Q_{ca} sont cocycliques.

En combinant les lemmes n°2 et n°3 et leur corollaire,on déduit la cocyclicité des six points P_{ab} , P_{bc} , P_{ac} , P_{cb} , Q_{ba} et Q_{ca} (cercle Γ_a) puis, en substituant le sommet B au sommet A, on a celle des six points P_{ba} , P_{bc} , P_{ac} , P_{ca} , Q_{ab} et Q_{cb} (cercle Γ_b) et enfin, en substituant le sommet C au sommet B, celle des six points P_{ca} , P_{cb} , P_{ab} , P_{ba} , Q_{ac} et Q_{bc} (cercle Γ_c).

Lemme n°4: les quatre points Q_{ba} , Q_{ca} , Q_{ab} et Q_{cb} sont cocycliques ainsi que les quatre points Q_{ba} , Q_{ca} , Q_{ab} et Q_{ac} .

Comme les quatre points A,B,Q_{ab} et Q_{ba} sont cocycliques (cf lemme n°3), on a les relations d'angles:

 $\angle Q_{ab}Q_{ba}Q_{ca} = \angle Q_{ab}Q_{ba}A = 180^{\circ} - \angle Q_{ab} BA = \angle Q_{ab} Q_{cb} Q_{ca}$ (car Δ_c est parallèle à AB).

De même comme les quatre points A,C,Q_{ac} et Q_{ca} sont cocycliques, \angle AQ_{ac}Q_{ca} = \angle ACQ_{ca} = \angle BAC/2 et Q_{ab}Q_{ac}Q_{ca} = \angle Q_{ab}Q_{ac} A + \angle AQ_{ac}Q_{ca} = \angle ACB/2 + \angle BAC/2 = 90° - \angle ABC/2 = \angle Q_{ab}BA = 180° - \angle Q_{ab}Q_{ba} A.

Corollaire: les cinq points Q_{ba} , Q_{ca} , Q_{ab} , Q_{cb} et Q_{ac} sont cocycliques. En substituant C à B on obtient le sixième point Q_{bc} qui figure sur le même cercle.

Les six points Q_{ab} , Q_{ba} Q_{ac} , Q_{ca} , Q_{bc} et Q_{cb} sont donc cocycliques (cercle Γ).

Question B

On trace dans le triangle ABC le cercle inscrit (γ) de centre I et les cercles exinscrits (γ_a), (γ_b) et (γ_c) de centres E_a , E_b et E_c . Soit K_a la projection de I sur le côté BC et L_a , L_b et L_c les projections des points E_a , E_b et E_c sur les côtés du triangle ABC.

Lemme n°5: les deux cercles (γ) et (Γ_b) sont orthogonaux.

Cela revient à démontrer que la puissance de I par rapport au cercle (Γ_b) est égale au carré du rayon du cercle (γ). En d'autres termes $IK_a^2 = IP_{ba}.IP_{ca}$.

Or $IP_{ba} = IB.sin(\angle IBP_{ba}) = IB.sin(\angle ABC/2)$ et $IP_{ca} = IC.sin(\angle ICP_{ca}) = IC.sin(\angle ACB/2)$.

D'autre part $IK_a = IB.sin(\angle IBC) = IB.sin(\angle ABC/2)$ et $IK_a = IC.sin(\angle ICB) = IB.sin(\angle ACB/2)$.

D'où $IK_a^2 = IB.IC.\sin(\angle ABC/2)$. $\sin(\angle ACB/2) = IP_{ba}.IP_{ca}$.

Corollaire: le cercle (γ) est orthogonal aux trois cercles (Γ_a), (Γ_b) et (Γ_c)

Lemme n°6: le cercle (γ_a) est orthogonal au cercle (Γ_b) et au cercle (Γ_c) .

Cela revient à démontrer que la puissance de E_a par rapport au cercle (Γ_b) est égale au carré du rayon du cercle (γ_a) . Comme précédemment on démontre aisément que $E_aL_a^2=E_aP_{ba}$. E_aP_{ca} . Même raisonnement avec le cercle (Γ_c) .

Corollaire: les cercles (γ_a) , (γ_b) et (γ_c) sont respectivement orthogonaux aux cercles (Γ_b) et (Γ_c) , (Γ_a) et (Γ_c) et enfin (Γ_a) et (Γ_b) .

Conclusion: (Γ_a) est orthogonal aux cercles (γ) , (γ_b) et (γ_c) ; (Γ_b) est orthogonal aux cercles (γ) , (γ_a) et (γ_c) et enfin (Γ_c) est orthogonal aux cercles (γ) , (γ_a) et (γ_b) .

Question C

Les trois droites Δ_a , Δ_b et Δ_c sont les axes radicaux des cercles (Γ_a) , (Γ_b) et (Γ_c) pris deux à deux et le point I est le centre radical.

D'après le lemme $n^\circ 1$, les droites Δ_a, Δ_b et Δ_c prises deux à deux se coupent aux milieux H_a, H_b et H_c des côtés du triangle ABC.Comme $\angle AQ_{ba}H_a = \angle AQ_{ca}H_a = 90^\circ - \angle BAC/2$, le triangle $H_aQ_{ba}Q_{ca}$ est isocèle. Les points H_a, M et M_a qui sont situés sur la médiatrice de $Q_{ba}Q_{ca}$ sont donc alignés sur une droite qui est paralléle à la bissectrice intérieure de l'angle en A. Il en est de même des points H_b, M et M_b et M_c qui sont respectivement alignés sur des droites paralléles aux bissectrices intérieures des angles en B et en C. La droite M_bM_c qui est la médiatrice de $P_{ba}P_{ca}$, est perpendiculaire à la bissectrice de l'angle en A. Elle est donc perpendiculaire à M_aH_a . Même constat pour M_cM_a qui est perpendiculaire à M_bH_b et pour M_aM_b qui est perpendiculaire à M_cH_c .

Conclusion: les trois points M_a , M_b et M_c sont les sommets d'un triangle dont M est l'orthocentre. Ces quatre points forment bien un système orthogonal et les droites qui portent les côtés du triangle $M_aM_bM_c$ passent par les milieux H_a , H_b et H_c des côtés du triangle ABC.