TRIÁNGULOS CABRI

Problema 899 a. (American Mathematical Monthly (1894), Volumen 1, número 1, página 23). Si Δ es el área del círculo inscrito en un triángulo ABC y Δ_a , Δ_b y Δ_c son las áreas de los círculos exinscritos, demostrar que:

$$\frac{1}{\sqrt{\Delta}} = \frac{1}{\sqrt{\Delta_a}} + \frac{1}{\sqrt{\Delta_b}} + \frac{1}{\sqrt{\Delta_c}}$$

Solución:

Si r es el radio del círculo inscrito al triángulo ABC, r_a , r_b y r_c son los radios de los círculos exinscritos y S es el doble de su área, entonces:

$$\frac{1}{\sqrt{\Delta_a}} + \frac{1}{\sqrt{\Delta_b}} + \frac{1}{\sqrt{\Delta_c}} = \frac{1}{\sqrt{\pi r_a^2}} + \frac{1}{\sqrt{\pi r_b^2}} + \frac{1}{\sqrt{\pi r_c^2}}$$

$$= \frac{1}{\sqrt{\pi}} \left(\frac{1}{r_a} + \frac{1}{r_b} + \frac{1}{r_c} \right)$$

$$= \frac{1}{\sqrt{\pi}} \left(\frac{-a + b + c}{S} + \frac{a - b + c}{S} + \frac{a + b - c}{S} \right)$$

$$= \frac{1}{\sqrt{\pi}} \left(\frac{a + b + c}{S} \right)$$

$$= \frac{1}{\sqrt{\pi} r}$$

$$= \frac{1}{\sqrt{\pi r^2}}$$

$$= \frac{1}{\sqrt{\Delta}}$$