12073. Proposed by Hakan Karakus, Antalva, Turkey. Given a scalene triangle A BC, let G
denote its centroid and H denote its orthocenter. Let P, be the second point of intersection
of the two circles through A that are tangent to BC at B and at C. Similarly define Py and
Pc. Prove that G, H, P, Pg, and P¢ are concyclic.

Solution of Ricardo Barroso Campos. Sevilla. Spain
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Let F the point intersection of lines AP, and BC.

Is (FPa )(FA)=FB2=(BC- FB)?, then FB=FC, and AF is median of ABC. Thus G, the centroide, is on
AF.
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Thus APa=AF-PAF= m-xm=




Let H orthocencer. The four points H H, F and P are concyclic.
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(AH)) (AHa)=bc cos a=——

Thus, £ZHPA G=£HP,F = £tHH,F = 90°
Similarly, £HPg G=2HP.G = 902

Thus G, H, Pa Pg Pc are concyclic.



