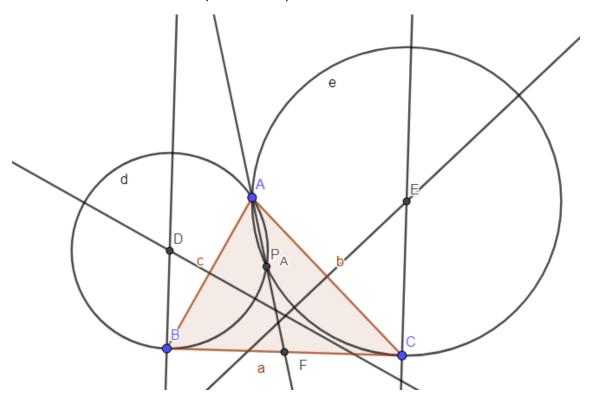
12073. Proposed by Hakan Karakus, Antalya, Turkey. Given a scalene triangle ABC, let G denote its centroid and H denote its orthocenter. Let P_A be the second point of intersection of the two circles through A that are tangent to BC at B and at C. Similarly define P_B and P_C . Prove that G, H, P_A , P_B , and P_C are concyclic.

Solution of Ricardo Barroso Campos. Sevilla. Spain



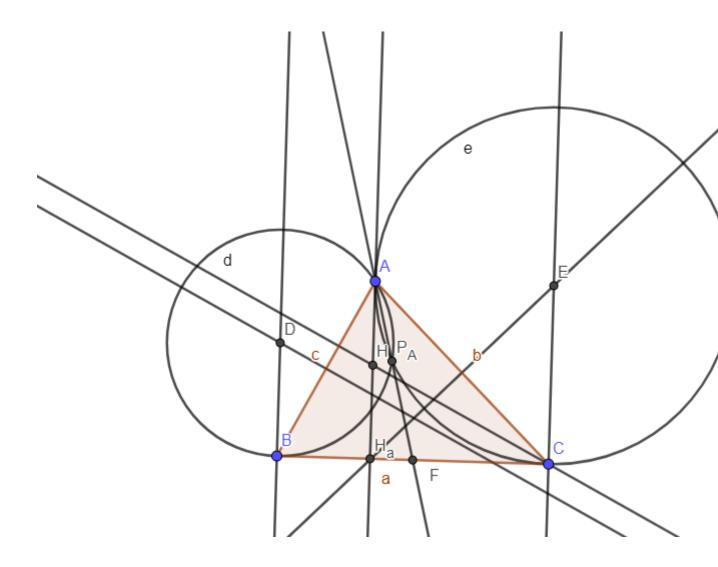
Let F the point intersection of lines AP_A and BC.

Is $(FP_A)(FA)=FB^2=(BC-FB)^2$, then FB=FC, and AF is median of ABC. Thus G, the centroide, is on AF.

$$m^2 = AF^2 = \frac{2 c^2 + 2 b^2 - a^2}{4}$$

$$(FP_A)(FA) = (x FA)(FA) = \frac{a^2}{4}; x = \frac{a^2}{4 m^2}$$

Thus AP_A=AF-P_AF= m-xm=
$$\frac{4m^2-a^2}{4m}$$



Let H orthocencer. The four points H $H_a\,F$ and $P_A\,$ are concyclic.

$$(\mathsf{AP_A})(\mathsf{AF}) = \frac{4m^2 - a^2}{4m} \ m = \frac{4m^2 - a^2}{4} = \frac{4^2 \frac{c^2 + 2b^2 - a^2}{4} - a^2}{4} = \frac{c^2 + b^2 - a^2}{2}$$

 $AH_a = c \sin \beta$

$$AH = \frac{b \cos \alpha}{\sin \beta}$$

(AH) (AH_a)=bc cos
$$\alpha = \frac{c^2+b^2-a^2}{2}$$

Thus,
$$\angle HP_A G = \angle HP_AF = \angle HH_aF = 90^\circ$$

Similarly,
$$\angle {\rm HP_B}~{\rm G} = \angle HP_CG = 90^{\rm o}$$

Thus G, H, P_A P_B P_C are concyclic.