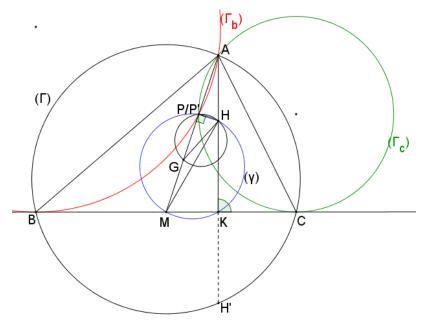
Problema 899

Propuesto por Hakan Karakus, Antaya, Turkía.

Dado un triángulo escaleno ABC, sean G su baricentro y H su ortocentro. Sea P_A el segundo punto de intersección de las circunferencias que contienen a A y son tangentes a BC en B y en C . Definimos similarmente P_B y P_C . Demostrar que G, H, P_A , P_B y P_C son concíclicos.

American Mathematical Monthly (2018): November, p. 851

Solution proposée par Philippe Fondanaiche



Nous allons démontrer que les trois points G,H et P_A forment un triangle rectangle d'hypoténuse GH et d'angle \angle GP_A H = 90°. Dès lors par permutation des points P_A,P_B et P_C, les cinq points G,H,P_A,P_B et P_C sont sur un même cercle de diamètre GH.

Notations

Pour simplifier les notations, on désigne ci-après par P au lieu de P_A le deuxième point d'intersection autre que A des cercles (Γ_b) et (Γ_c) .

Soit:

M le milieu du côté BC. G est sur la médiane AM.

- (Γ) le cercle circonscrit au triangle ABC,
- (Γ_b) le cercle tangent en B au cöté BC passant par A,
- (Γ_c) le cercle tangent en C au cöté BC passant par A,
- (γ) le cercle circonscrit au triangle HKM,

P' le point d'intersection du cercle (γ) avec la médiane AM,

K la hauteur issue de A sur le côté BC.On sait que le point H' symétrique de H par rapport à K est sur (Γ) .

Lemme n°1. La médiane AM est l'axe radical des cercles (Γ_b) et (Γ_c).

En effet la droite AP coupe la droite BC en un point M' tel que $M'B^2 = M'C^2 = MP.MA$. D'où M'B = M'C et le point M' est confondu avec le point M.

On en déduit $MB^2 = MP.MA = (MA-AP).MA = MA^2 - AP.MA$. D'où $AP.MA = MA^2 - MB^2$.

Lemme n°2. Les points P et P' sont confondus.

La puissance de A par rapport au cercle (γ) est égale à AP'.AM = AH.AK

Or $AH.AK = (AK - H'K).AK = AK^2 - H'K.AK = AK^2 - BK.KC$

Comme $AK^2 = MA^2 + MK^2$ et $BK.KC = (MB + MK).(MB - MK) = MB^2 - MK^2$, on en déduit :

 $AH.AK = MA^2 - MB^2.$

D'où $AP'.MA = AH.AK = MA^2 - MB^2 = AP.MA$. Soit AP' = AP.

Comme MH est diamètre du cercle (γ), il en résulte que \angle MPH = \angle GPH = 90°C.q.f.d.