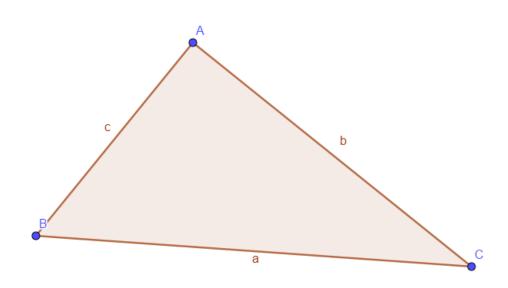
Problema 901

53. Dado un triángulo ABC se puede construir sobre BC, cinco triángulos BCA₁, CA₂B, CBA₃, A₄CB, BA₅C, semejantes a ABC. Demostrar que los seis puntos A, A₁, A₂, A₃, A₄, A₅, están sobre la misma circunferencia, y que los triángulos AA₂A₁(despiste corregido el 16 de enero de 2019.. antes el orden era otro) , y A₄A₅A₃ son semejantes a ABC.

Rouché, E. y de Comberousse, C.H. (1900): Traité de Géométrie. 7ª edición, revisada y aumentada por Eugéne Rouché. Premiere part. Geometrie plane. Paris Gauthier Villars, imprimeur libraire. (p. 498)

Solución del director.

Sean $\alpha \beta \gamma$ los ángulos de ABC.



Tenemos las siguientes relaciones:

 $\angle ABC=\beta$, $\angle BAC=\alpha$, $\angle BCA=\gamma$

 $\angle A_1BC=\alpha$, $\angle BA_1C=\gamma$, $\angle BCA_1=\beta$

 $\angle A_2BC=\gamma$, $\angle BA_2C=\beta$, $\angle BCA_2=\alpha$

 $\angle A_3BC=\beta$, $\angle BA_3C=\gamma$, $\angle BCA_3=\alpha$

 $\angle A_4BC=\gamma$, $\angle BA_4C=\alpha$, $\angle BCA_4=\beta$

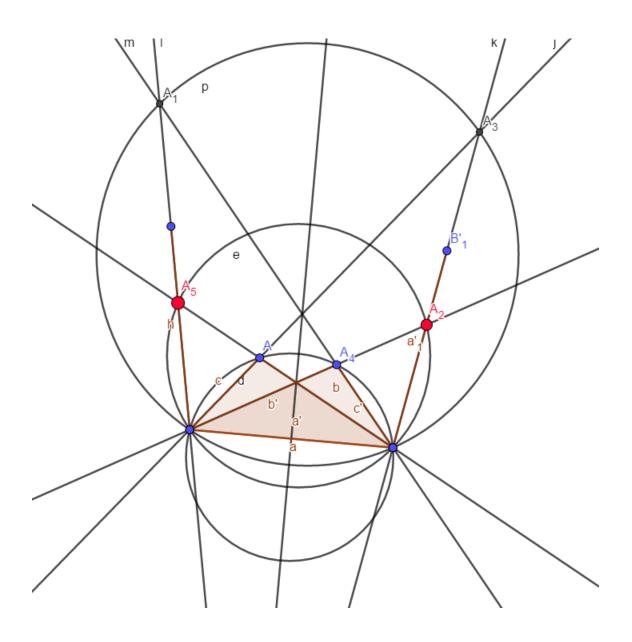
 $\angle A_5BC=\alpha$, $\angle BA_5C=\beta$, $\angle BCA_5=\gamma$

De donde se deduce que

A A₄ B C son concíclicos.

A₅A₂BC son concíclicos.

A₁A₃ BC son concíclicos.



Tenemos: $\angle A_5AA_4 = \angle BAC + \angle A_4BC = \alpha + \beta, \angle A_5A_1A_4 = \gamma$, luego $A_5AA_4A_1$ son concíclicos.

Tenemos: $\angle A_4AA_3 = \angle \mathit{CBA} = \beta$, $\angle A_4A_2A_3 = 180^{\circ}-\beta$, luego $A_4AA_3A_2$ son concíclicos.

 $\mathsf{Adem\'{a}s}, \angle A_1A_4A \ = \angle A_3A \ A_4 = \beta. \ \mathsf{Luego} \ \mathsf{A_4} \ \mathsf{A} \ \mathsf{A_3} \ \mathsf{A_1} \ \mathsf{son} \ \mathsf{conc\'iclicos}$

Así, cqd, A, A₁, A₂, A₃, A₄, A₅, están sobre la misma circunferencia.

Observando el triángulo A A_2 A_1 tenemos que $\angle A_2AA_1=A_2A_4A_1=\alpha$, $\angle A$ $A_2A_1=A_2A_4A_1=\alpha$, $A_2A_1=A_2A_4A_1=\alpha$, $A_3A_4=\alpha$, luego, $A_3A_4=\alpha$, es semejante a ABC, cqd. De manera análoga $A_4A_5A_3$ es semejante a ABC.

Ricardo Barroso Campos. Jubilado. Sevilla. España