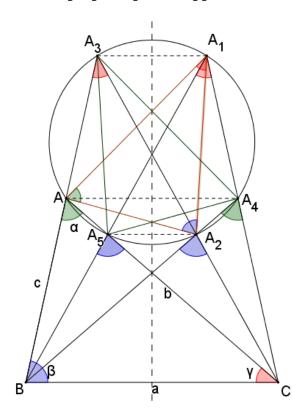
Problema 901

53. Dado un triángulo ABC se puede construir sobre BC, cinco triángulos BCA₁, CA₂B, CBA₃, A₄CB, BA₅C, semejantes a ABC. Demostrar que los seis puntos A, A₁, A₂, A₃, A₄, A₅ están sobre la misma circunferencia, y que los triángulos AA₂A₁ y A₄A₅A₃ son semejantes a ABC.

Rouché, E. y de Comberousse, C.H. (1900): Traité de Géométrie. 7ª edición, revisada y aumentada por Eugéne Rouché. Premiere part. Geometrie plane. Paris Gauthier Villars, imprimeur libraire. (p. 498)

Solution proposée par Philippe Fondanaiche



Les angles aux sommets du triangle ABC sont désignés par: $\alpha = \angle BAC$, $\beta = \angle ABC$ et $\gamma = \angle ACB$. On suppose que les cinq points A_1 , A_2 , A_3 , A_4 , A_5 sont du même côté que le point A par rapport au côté BC. La construction des cinq triangles BCA₁, CA₂B, CBA₃, A₄CB, BA₅C semblables au triangle ABC fait apparaître les propriétés suivantes:

- $\angle BAC = \angle BA_4C = \alpha$, $\angle BA_2C = \angle BA_5C = \beta$ et $\angle BA_1C = \angle BA_3C = \gamma$,
- les points B,A et A_3 sont sur une même droite, de même que les points C, A_1 et A_4 , puis les points A, A_5 et C et enfin les points B, A_2 et A_4 .
- les quatre points A_1, B_2, A_3 et A_5 et les quatre points A_4, C_4, A_1 et A_2 sont respectivement symétriques les uns des autres par rapport à la médiatrice Δ du côté BC.
- les droites A_1A_3 , AA_4 et A_2A_5 sont parallèles au côté BC. D'où $\angle A_2A_3A_1 = \angle A_5A_1A_3 = \alpha$
- les triangles BA₅C et CA₂B sont isométriques de même que les triangles BAC et CA₄B ainsi que les triangles BA₃C et CA₁B. D'où \angle BA₂C = \angle CA₅B = β et \angle BA₃C = \angle CA₁B = γ

Il en résulte que les points A,A₃,A₁ et A₄ sont sur un même cercle (Γ ₁) car ce sont les sommets d'un trapèze isocèle. Il en est de même des points A,A₄,A₂ et A₅. situés sur un même cercle (Γ ₂).

Par ailleurs $\angle BA_2C = \angle A_3A_2A_4 = \beta$ et $\angle A_3A_1A_4 = \angle A_3A_1C = \angle A_3A_1B + \angle BA_1C = \alpha + \gamma$.

D'où $\angle A_3 A_2 A_4 + \angle A_3 A_1 A_4 = \alpha + \beta + \gamma = 180^{\circ}$.

Les quatre points A_1, A_3, A_2 et A_4 sont donc cocycliques. Il en est de même des quatre points A_1, A_3, A_1 et A_5 . Conclusion: les deux cercles (Γ_1) et (Γ_2) sont confondus et les six points A_1, A_2, A_3, A_4, A_5 , sont cocycliques.

Il en découle que le triangle AA_2A_1 est semblable au triangle ABC avec les relations d'angles $\angle A_2AA_1 = \angle A_2A_3A_1 = \alpha$ et $\angle AA_1A_2 = \angle A_4A_1A_5 = \gamma$. De la même manière le triangle $A_4A_5A_3$ symétrique du triangle AA_2A_1 par rapport à la droite Δ est semblable au triangle ABC.