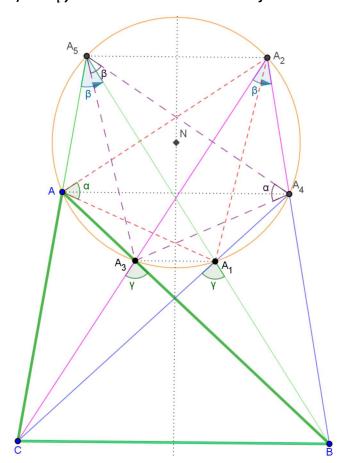
Problema 901.

53. Dado un triángulo ABC se puede construir sobre BC, cinco triángulos BCA₁, CA₂B, CBA₃, A_4 CB, BA_5 C, semejantes a ABC. Demostrar que los seis puntos A, A_1 , A_2 , A_3 , A_4 , A_5 , están sobre la misma circunferencia, y que los triángulos AA_2A_1 , y $A_4A_5A_3$ son semejantes a ABC.

Rouché, E. y de Comberousse, C.H. (1900): *Traité de Géométrie*. 7ª edición, revisada y aumentada por Eugéne imprimeur Rouché. Premiere part. *Geometrie plane*. Paris Gauthier Villars, libraire. (p. 498)

Solución de Saturnino Campo Ruiz, Profesor de Matemáticas jubilado, de Salamanca.

1) Los A_i y A están sobre la misma circunferencia



Denotamos por α,β,γ , como es habitual, las amplitudes de los ángulos del triángulo ABC. Los triángulos BCA_1 y CBA_3 tienen igual el ángulo en A_i , en los otros vértices los tienen permutados. Es inmediato deducir que son simétricos respecto de la mediatriz de CB. Por tanto, el segmento A_3A_1 es paralelo a la base común.

Los otros triángulos también tienen esta propiedad. Las parejas CA_2B y BA_5C ; ABC y A_4CB tienen igual el ángulo en el vértice A_i . Se tienen pues: $A_3A_1 \parallel A_2A_5 \parallel AA_4 \parallel BC$. En el hexágono $A_2A_5AA_3A_1A_4A_2$, las rectas que unen los lados

las rectas que unen los lados opuestos están sobre la recta *BC*, por tanto esos puntos están sobre una cónica.

Queremos ver que esa cónica es una circunferencia.

Consideremos la circunferencia w que circunda al trapecio $A_3A_1A_2A_5$.

En el triángulo BCA_1 , $BA_1=\frac{bc}{a}$ (homólogo de AC en ABC); y en BA_5C , $BA_5=\frac{ac}{b}$ (homólogo de AB en ABC), por tanto $Pot(B;w)=BA_1\cdot BA_5=\frac{bc}{a}\cdot\frac{ac}{b}=a^2$. Por otra parte $BA_4=CA=b$ y $BA_2=CA_5=\frac{a^2}{b}$, de donde $BA_4\cdot BA_2=b\cdot\frac{a^2}{b}=a^2$ que

Por otra parte $BA_4 = CA = b$ y $BA_2 = CA_5 = \frac{a^2}{b}$, de donde $BA_4 \cdot BA_2 = b \cdot \frac{a^2}{b} = a^2$ que demuestra que A_4 también está en esa circunferencia, así como A, que es su simétrico respecto de la mediatriz de BC. En consecuencia los seis puntos yacen en una circunferencia.

2) Los triángulos AA_2A_1 y $A_4A_5A_3$ son semejantes a ABC.

Los triángulos AA_2A_1 y $A_4A_5A_3$ son simétricos respecto del diámetro perpendicular a BC. Bastará demostrar la semejanza de uno de ellos para concluir que también el otro lo es. Se tiene $\not A_3A_5A_4 = \not A_3A_2A_4 = \not B$ por construcción; $\not A_5A_4A_3 = \not A_5A_3A + \not AA_5A_3 = \alpha$.

Por tanto $A_4A_5A_3$ y ABC son semejantes.