TRIÁNGULOS CABRI

<u>Problema 903A.</u> (Perrin, D., Mathématiques d'école, nombre, mesures et géometrie. Cassini (pág. 242)) Sean *ABC* un triángulo y *D* y *E* dos puntos situados en los segmentos *CA* y *BA*, respectivamente. Si las rectas *BD* y *CE* se cortan en el punto *M*, ¿ pueden tener igual área los triángulos *BME*, *CMB* y *DMC*?

Solución:

Considerando coordenadas baricéntricas con respecto al triángulo ABC, si:

$$\begin{cases} D = (d:0:1-d) & 0 < d < 1 \\ E = (e:1-e:0) & 0 < e < 1 \end{cases}$$

entonces:

$$\begin{cases} BD = 0 = (d-1)x + dz \\ CE = 0 = (e-1)x + ey \end{cases} \Rightarrow M = (de: d(1-e): e(1-d))$$

por lo que, si las áreas de los tres triángulos considerados coincidiesen, tendríamos que:

$$\begin{cases} 0 = \frac{(BME) - (CMB)}{(ABC)} = \begin{vmatrix} 0 & 1 & 0 & 0 & 1 \\ de & d(1-e) & e(1-d) & -de & d(1-e) & e(1-d) \\ e & 1-e & 0 & 0 & 1 & 0 \\ de & d(1-e) & e(1-d) & -de & d(1-e) & e(1-d) \\ de & d(1-e) & e(1-d) & -de & d(1-e) & e(1-d) \\ de & d(1-e) & e(1-d) & -de & d(1-e) & e(1-d) \\ e & 1-e & 0 & 0 & 1 \\ de & d-e-de & d-e & d-e \end{cases} = e-d$$

es decir:

$$\begin{cases} 0 = e(d - e + de) \\ 0 = e - d \end{cases} \Rightarrow d = 0 = e \rightarrow \text{imposible}$$

y se llega a una contradicción. Por tanto, los triángulos BME, CMB y DMC no pueden tener igual área.

TRIÁNGULOS CABRI

Problema 903B. (Perrin, D., Mathématiques d'école, nombre, mesures et géometrie. Cassini (pág. 242)) En un triángulo ABC, la mediatriz del lado AC corta al segmento AC en el punto M y al segmento AB en el punto ABC : ¿ Cuál es la condición para que el área del triángulo AMT sea igual a la cuarta parte del área del triángulo ABC ?. ¿ Y si la mediatriz del lado AC corta al lado AB fuera del segmento AB ?. Dar una construcción de tal ejemplo.

Solución:

Considerando coordenadas baricéntricas con respecto al triángulo ABC, como M = (1:0:1) y la ecuación de la mediatriz correspondiente al segmento AC es:

$$m_{AC} \equiv 0 = b^2 x + (a^2 - c^2)y - b^2 z$$

entonces:

$$\begin{cases} T = (c^2 - a^2 : b^2 : 0) \\ 6 \\ T = (a^2 - c^2 : -b^2 : 0) \end{cases}$$

por lo que:

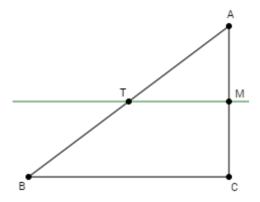
① Si el punto T está situado en el interior del segmento AB, como $T = (c^2 - a^2 : b^2 : 0)$, resulta que:

$$\frac{1}{4} = \frac{(MAT)}{(ABC)} = \frac{\begin{vmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ c^2 - a^2 & b^2 & 0 \end{vmatrix}}{2(-a^2 + b^2 + c^2)} = \frac{b^2}{2(-a^2 + b^2 + c^2)}$$

por lo que:

$$c^2 = a^2 + b^2$$

es decir, el triángulo ABC ha de ser rectángulo en C.



TRIÁNGULOS CABRI

② Si el punto T está situado en el exterior del segmento AB, como $T = (a^2 - c^2 : -b^2 : 0)$, entonces, el punto T debe estar situado en la semirrecta BA, por lo que:

$$\frac{1}{4} = \frac{(MTA)}{(ABC)} = \frac{\begin{vmatrix} 1 & 0 & 1 \\ c^2 - a^2 & b^2 & 0 \\ 1 & 0 & 0 \end{vmatrix}}{2(-a^2 + b^2 + c^2)} = -\frac{b^2}{2(-a^2 + b^2 + c^2)}$$

luego:

$$a^2 = 3b^2 + c^2$$

Dado un segmento BC de longitud a, considerando el sistema de referencia cartesiano de ejes rectangulares con origen en el punto medio O del segmento BC y eje de abscisas en la recta BC y tomando como unidad de medida la semilongitud del segmento BC, como:

$$\begin{cases} C = (1,0) \\ B = (-1,0) \end{cases} \Rightarrow \begin{cases} a = BC = 2 \\ b = AC = \sqrt{(x-1)^2 + y^2} \\ c = AB = \sqrt{(x+1)^2 + y^2} \end{cases}$$

si $A = (x, y) (y \neq 0)$, resulta que:

$$0 = a^{2} - 3b^{2} - c^{2}$$

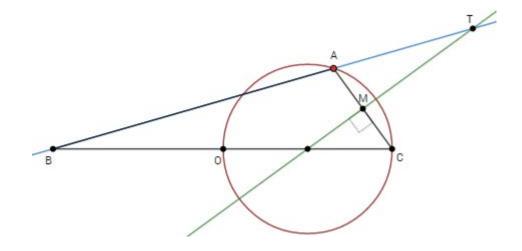
$$0 = 4 - 3[(x - 1)^{2} + y^{2}] - [(x + 1)^{2} + y^{2}]$$

$$0 = -4(x^{2} - x + y^{2})$$

por lo que el punto A debe estar situado sobre la circunferencia de ecuación:

$$\left(x - \frac{1}{2}\right)^2 + y^2 = \left(\frac{1}{2}\right)^2$$

es decir, el punto A debe estar situado sobre la circunferencia con diámetro OC.



FACEBOOK