Problema 904

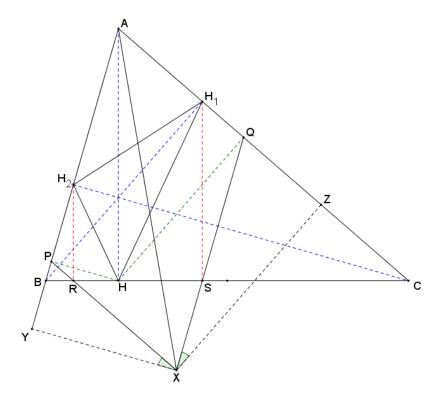
Sean AH, BH1 y CH2 las tres alturas del triángulo ABC.

Se trazan las perpendiculares HP y HQ sobre los lados AB y AC y desde los puntos H1 y H2 las perpendiculares H1S y H2R sobre BC.

Las rectas PR y QS se cortan sobre la simediana de A.

D'Ocagne, M. (1884): Note sur la symédiane. Nouvelles annales de mathématiques 3ª Série, tome 3. p. 28

Solution proposée par Philippe Fondanaiche



Lemme (**supposé connu**): dans un triangle quelconque les distances d'un point de la symédiane aux côtés adjacents sont proportionnelles aux longueurs de ces côtés.

Les droites [PR] et [QS] se rencontrent au point X. On va démontrer que les distances XY et XZ de X aux côtés AB et AC sont proportionnelles aux longueurs de ces côtés.

Par construction la droite $[HH_1]$ qui joint les pieds des hauteurs issues de A et de C dans le triangle ABC et la droite [AB] sont antiparallèles. De la même manière les droites $[HH_2]$ et [AC] sont antiparallèles.

Dans le triangle BHH₂, la droite [PR] qui joint les pieds des hauteurs issues de H et de H₂ et la droite [HH₂] sont antiparallèles. Il en résulte que la droite [PR] est parallèle à la droite [AC].

Il en est de même avec la droite [QS] qui est antiparallèle de la droite $[HH_1]$ et est donc parallèle à la droite [AB].Le quadrilatère APXQ est donc un parallèlogramme.

Comme $\angle XPY = \angle XQZ$, les deux triangles rectangles XPY et XQZ sont semblables.

On en déduit les relations : XY/XZ = XP/XQ = AQ/AP.

Or AP = AH.cos(\angle BAH) = AH.sin(\angle ABC) et AQ = AH.cos(\angle CAH) = AH.sin(\angle ACB).

D'où XY/XZ = $AQ/AP = \sin(\angle ACB)/\sin(\angle ABC)$

D'après la loi des sinus dans le triangle ABC, on a AB/AC = $\sin(\angle ACB)/\sin(\angle ABC)$.

Donc XY/XZ = AB/AC. C.q.f.d.