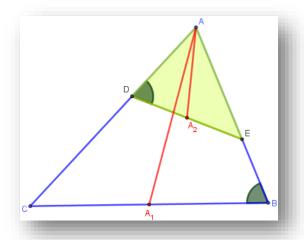
Problema 905.-

Teorema 8.4. Sea T_a el punto de intersección de las tangentes en B y C al circuncírculo de ABC. Entonces AT_a es una simediana del triángulo ABC.

Leversha, G. (2013): The geometry of the triangle. (Pathways, Number Two), p. 101

Solución de Florentino Damián Aranda Ballesteros, Córdoba (España).

La simediana por A es el lugar geométrico de los puntos medios de las antiparalelas a BC con respecto a los lados AB y AC del triángulo ABC. Este hecho es fácilmente demostrable como se sigue a continuación:



Sea la recta DE antiparalela a BC. Por tanto, los triángulos ΔABC y ΔADE son semejantes. Sea A_1 el punto medio del lado BC.

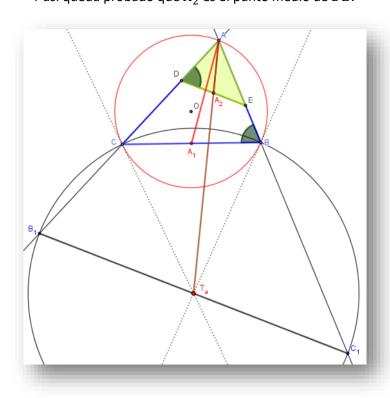
Por tanto, $AA_1=m_a$ (mediana del vértice A). Sea A_2 el punto donde la simediana del vértice A corta al lado DE.

Por tanto, se verificarán las igualdades entre las parejas de ángulos siguientes:

 $\not\preceq CAA_1 = \not\preceq A_2AE \ y \ \not\preceq DAA_2 = \not\preceq A_1AB.$ Así obtenemos la semejanza entre los triángulos $\Delta ADA_2 \sim \Delta ABA_1.$

En concreto, se dará la siguiente relación entre segmentos $\frac{AB}{A_1B}=\frac{AD}{A_2D}$; Ahora bien, teníamos que

 $\frac{AB}{BC} = \frac{AD}{DE}$, por la semejanza entre $\triangle ABC$ y $\triangle ADE$. Como $A_1B = \frac{1}{2} \cdot BC \rightarrow A_2D = \frac{1}{2} \cdot DE$. Y así queda probado que A_2 es el punto medio de DE.



De este modo, en efecto, se verifica que la simediana por A es el lugar geométrico de los puntos medios de las antiparalelas a BC con respecto a los lados AB y AC del triángulo ABC.

Basándonos en este hecho, si trazamos las tangentes por los vértices B y C al circuncírculo del triángulo ABC, ambas rectas se cortarán en T_a , punto que se encuentra en la mediatriz de BC. La circunferencia de centro, el punto T_a y de radio $T_aB = T_aC$, determinarán sobre la prolongación de los lados AB y AC dos puntos B_1 y C_1 . Nos quedará probar que

 B_1 , T_a y C_1 están alineados. Observamos para ello, que la suma $\angle CT_aB_1 + \angle BT_aC_1 + \angle CT_aB = \pi$.

En efecto, $\angle CT_aB_1=\pi-2\angle B$; $\angle BT_aC_1=\pi-2\angle C$; $\angle CT_aB=\pi-\angle COB=\pi-2\angle A$. Por tanto, T_a es el punto medio del segmento de extremos B_1 y C_1 .

Como quiera que B_1C_1 es una antiparalela al lado BC, resulta así que AT_a será la simediana s_a .