TRIÁNGULOS CABRI

Problema 905. (Leversha G. (2013): The goemetry of triangle (Pathwais, Numbre Two), pág. 101). Sea T_A el punto de intersección de las rectas tangentes en B y C al circuncírculo del triángulo ABC. Probar que AT_A es una simediana del triángulo ABC.

Solución:

Considerando coordenadas baricéntricas con respecto al triángulo *ABC*, como la ecuación de su circunferencia circunscrita es:

$$a^2yz + b^2xz + c^2xy = 0$$

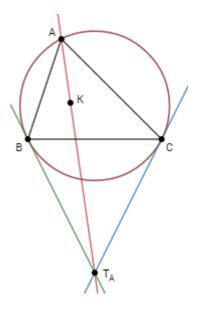
entonces, las ecuaciones de las rectas tangentes a ella en los puntos B y C son:

$$\begin{cases} t_B \equiv 0 = \begin{pmatrix} x & y & z \end{pmatrix} \begin{pmatrix} 0 & c^2 & b^2 \\ c^2 & 0 & a^2 \\ b^2 & a^2 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = c^2 x + a^2 z \\ t_C \equiv 0 = \begin{pmatrix} x & y & z \end{pmatrix} \begin{pmatrix} 0 & c^2 & b^2 \\ c^2 & 0 & a^2 \\ b^2 & a^2 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = b^2 x + a^2 y \end{cases}$$

Vamos a distinguir tres casos:

① Si el ángulo correspondiente al vértice A es agudo, entonces, $a^2 < b^2 + c^2$, por lo que:

$$T_A = t_B \cap t_C = (-a^2 : b^2 : c^2)$$



siendo:

$$\begin{vmatrix} 1 & 0 & 0 \\ a^2 & b^2 & c^2 \\ -a^2 & b^2 & c^2 \end{vmatrix} = 0$$

por lo que los puntos A, $K = (a^2 : b^2 : c^2)$ y T_A están alineados y, por tanto, la recta AT_A es la simediana del triángulo ABC correspondiente al vértice A.

Miguel-Ángel Pérez García-Ortega

TRIÁNGULOS CABRI

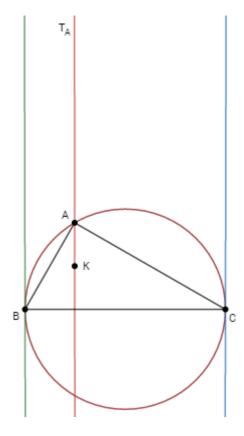
② Si el ángulo correspondiente al vértice A es recto, entonces, $a^2 = b^2 + c^2$, por lo que:

$$T_A = t_B \cap t_C = (b^2 + c^2 : -b^2 : -c^2)$$

siendo este punto el punto del infinito de ambas rectas (lo cual implica que son paralelas) y también es el punto del infinito de la simediana del triángulo *ABC* correspondiente al vértice *A*, cuya ecuación es:

$$c^2\mathbf{v} - b^2\mathbf{z} = 0$$

por lo que la recta AT_A es la simediana del triángulo ABC correspondiente al vértice A.



③ Si el ángulo correspondiente al vértice A es obtuso, entonces, $a^2 > b^2 + c^2$, por lo que:

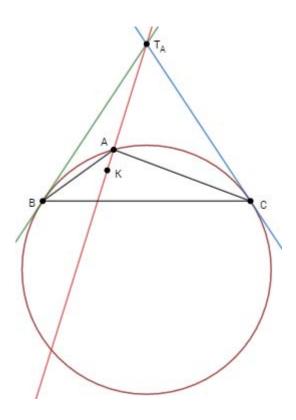
$$T_A = t_B \cap t_C = (a^2 : -b^2 : -c^2)$$

siendo:

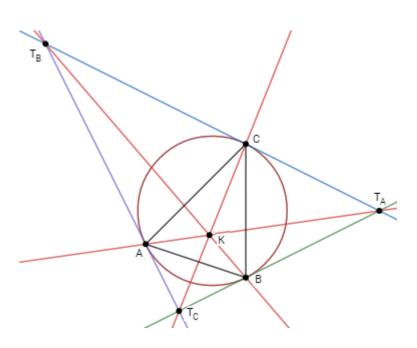
$$\begin{vmatrix} 1 & 0 & 0 \\ a^2 & b^2 & c^2 \\ a^2 & -b^2 & -c^2 \end{vmatrix} = 0$$

por lo que los puntos A, $K = (a^2 : b^2 : c^2)$ y T_A están alineados y, por tanto, la recta AT_A es la simediana del triángulo ABC correspondiente al vértice A.

TRIÁNGULOS CABRI



Si definiésemos de igual forma los puntos T_B y T_C y razonásemos de forma análoga, obtendríamos que las rectas BT_B y CT_C serían las simedianas del triángulo ABC correspondientes a los vértices B y C, respectivamente, lo cual significa que las rectas AT_A , BT_B y CT_C son concurrentes en el punto simediano K del triángulo ABC. ¿ Qué significa esto ?. Como la circunferencia circunscrita al triángulo ABC es la circunferencia inscrita de su triángulo tangencial $T_AT_BT_C$ y los puntos de tangencia de esta circunferencia con el triángulo tangencial son A, B y C, entonces, las rectas AT_A , BT_B y CT_C son las cevianas del punto de Gergonne del triángulo tangencial, es decir, el punto simediano K del triángulo ABC es el punto de Gergonne de su triángulo tangencial $T_AT_BT_C$.



Miguel-Ángel Pérez García-Ortega