Problema 905

Teorema 8.4 Sea T_A el punto de intersección de las tangentes en B y C al circuncírculo de ABC.

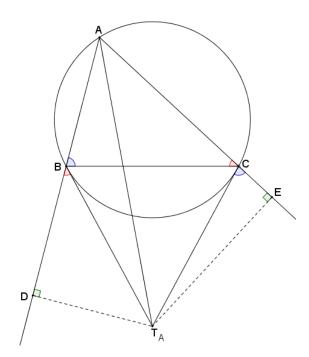
Entonces AT_A es una simediana del triángulo ABC.

Leversha, G. (2013): The geometry of the triangle. (Pathways, Number Two), p. 101

Solution proposée par Philippe Fondanaiche

Lemme (**supposé connu**): dans un triangle quelconque les distances d'un point de la symédiane aux côtés adjacents sont proportionnelles aux longueurs de ces côtés.

Soient D et E les projections de T_A sur les droites [AB] et [AC]. On va démontrer que les distances T_AD et T_AE de T_A aux côtés AB et AC sont proportionnelles aux longueurs de ces côtés



Comme les droites T_AB et T_AC sont tangentes en B et C au cercle circonscrit au triangle ABC, on a les relations d'angles $\angle T_ABC = \angle T_ACB = \angle BAC$.

D'où \angle DBT_A = 180° – \angle ABC – \angle T_ABC = \angle ACB et \angle ECT_A = 180° – \angle ACB – \angle T_ACB = \angle ABC. Comme le triangle T_ABC est isocèle de sommet T_A,il en résulte que :

$$\begin{split} T_AD/T_AE &= T_ABsin(\,\angle\,DBT_A)/\,T_ACsin(\,\angle\,ECT_A), soit \\ T_AD/T_AE &= sin(\,\angle\,ACB)/sin(\,\angle\,ABC). \end{split}$$

D'après la loi des sinus dans le triangle ABC on sait que: $\sin(\angle ACB)/\sin(\angle ABC) = AB/AC$. D'où $T_AD/T_AE = AB/AC$. C.q.f.d.

Il existe bien d'autres démonstrations de ce théorème. Trois d'entre elles sont disponibles dans l'article de Yufei Zhao (pages 5 et 6) à l'adresse: http://yufeizhao.com/olympiad/three_geometry_lemmas.pdf