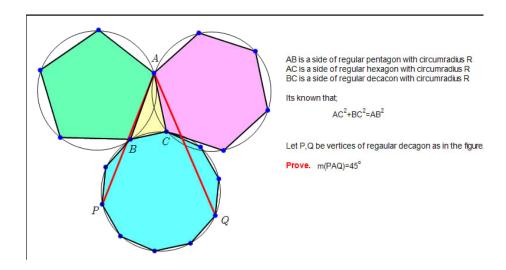
Pr. Cabri 907

Enunciado

Sean un pentágono regular A, B, A3, A4, A5, un decágono regular B, C, B3, B4, Q, B6, B7, B8, P, B10, y un hexágono regular A, C2, C3, C4, C5, C, de tal modo que las circunferencias que los contienen tengan el mismo radio, y que los vértices estén en el sentido del reloj. Es conocido que $AC^2 + BC^2 = AB^2$.

Demostrar que < PAQ=45º

Altıntaş, A. (2019) Perú Geométrico. Geometria para todos (Grupo de Facebook administrado por Miguel Ochoa).



Solución

por César Beade Franco

Suponemos que el decágono tiene como centro el punto (0,0) y vértices B(1,0) y C($\cos \frac{7\pi}{10}$, Sen $\frac{7\pi}{10}$).

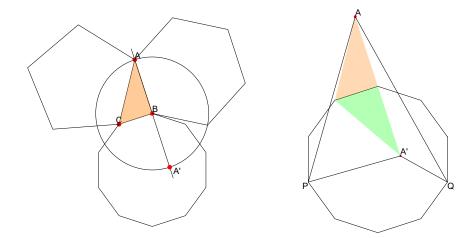
Para calcular A intersecamos la circunferencia con centro C y radio l_6 = 1, con la recta perpendicular a BC por B.

Es decir, resolvemos el sistema de ecuaciones $x^2 + (y-1)^2 = 1$, $y = \frac{\cos \frac{7\pi}{10} \star x}{1-\sin \frac{7\pi}{10}} + 1$.

Obtenemos los puntos A= $\left(-\frac{1}{2}\sqrt{\frac{1}{2}\left(3-\sqrt{5}\right)}\right)$, $\frac{-3+\sqrt{5}-\sqrt{5-2\sqrt{5}}}{-3+\sqrt{5}}$) y

A'=
$$(\frac{1}{2}\sqrt{\frac{1}{2}(3-\sqrt{5})}, \frac{-3+\sqrt{5}+\sqrt{5-2\sqrt{5}}}{-3+\sqrt{5}})(1).$$

Out[308]=



El coseno de PAQ viene dado por $\frac{AP.AQ}{|AP| |AQ|} = \frac{1}{\sqrt{2}}$ (2) por lo que el ángulo mide 45°. También podemos calcular PA'Q. En este caso $\frac{A'P.A'Q}{|A'P| |A'Q|} = -\frac{1}{\sqrt{2}}$, donde resulta un ángulo de 135°.

Notas

- (1) A partir de $\cos\left(\frac{\pi}{5}\right) = \frac{1}{4}\left(1 + \sqrt{5}\right)$ es fácil obtener $\cos\left(\frac{\pi}{10}\right) = \frac{1}{2}\sqrt{\frac{1}{2}\left(5 + \sqrt{5}\right)}$ y de sus múltiplos.
- (2) He aquí su cálculo. $\frac{AP.AQ}{|AP||AQ|}$ =

$$\left(\frac{1}{4} \left(-1 + \sqrt{5} - \sqrt{2 \left(5 + \sqrt{5} \right)} \right), \frac{1 + \sqrt{5 - 2 \sqrt{5}}}{-3 + \sqrt{5}} \right) \cdot \left(\frac{1}{4} \left(-1 + \sqrt{5} + \sqrt{2 \left(5 + \sqrt{5} \right)} \right), \frac{1 + \sqrt{5 - 2 \sqrt{5}}}{-3 + \sqrt{5}} \right) \right)$$

$$\left| \left(\frac{1}{4} \left(-1 + \sqrt{5} - \sqrt{2 \left(5 + \sqrt{5} \right)} \right), \frac{1 + \sqrt{5 - 2 \sqrt{5}}}{-3 + \sqrt{5}} \right) \right| \left(\frac{1}{4} \left(-1 + \sqrt{5} + \sqrt{2 \left(5 + \sqrt{5} \right)} \right), \frac{1 + \sqrt{5 - 2 \sqrt{5}}}{-3 + \sqrt{5}} \right) \right|$$

$$= \frac{\frac{1}{4} \left(5 + \sqrt{5} + \sqrt{50 + 22 \sqrt{5}} \right)}{\sqrt{10 + 4 \sqrt{5} + \sqrt{\frac{5}{2} \left(65 + 29 \sqrt{5} \right)}}} = \frac{1}{\sqrt{2}}$$