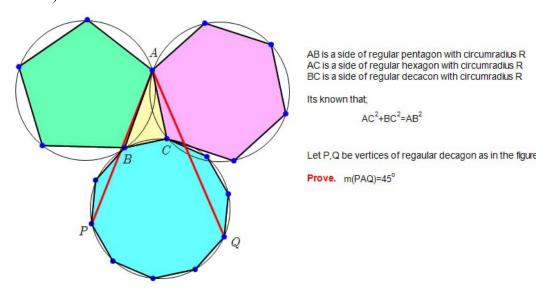
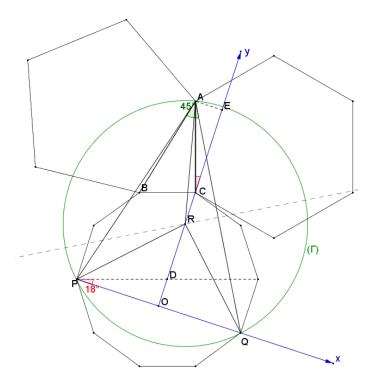
Problema n°907

Altıntaş, A. (2019) Perú Geométrico. Geometria para todos (Grupo de Facebook administrado por Miguel Ochoa.)



Solution proposée par Philippe Fondanaiche



On prend la droite [PQ] pour axe des abscisses Ox, le milieu du segment PQ pour origine O et la droite [OC] pour axe des ordonnées Oy. Celle-ci passe par le centre D du décagone.

On trace le point E projection de A sur Oy, puis le point R sur l'axe Oy tel que OR = OP = OQ

Le triangle RPQ est donc rectangle isocéle avec \angle PRQ = 90°

On a les relations d'angles : \angle OPD = 18° et \angle ACE = 18°.

Par hypothèse AC = DC = DP = 1.

D'où AE = $\sin(18^{\circ})$, OR = $\cos(18^{\circ})$,

 $OE = OD + DC + CE = \sin(18^{\circ}) + 1 + \cos(18^{\circ}),$

 $RE = OE - OR = \sin(18^\circ) + 1$

On en déduit

 $RQ^2 = 2\cos^2(18^\circ)$

 $RA^2 = AE^2 + RE^2 = \sin^2(18^\circ) + (\sin(18^\circ) + 1)^2$

soit $RA^2 = 2\sin^2(18^\circ) + 2\sin(18^\circ) + 1$

Or $\sin(18^\circ) = (\sqrt{5} - 1)/4$ et $\cos(18^\circ) = \sqrt{10 + 2\sqrt{5}}/4$

D'où RQ² = $(5 + \sqrt{5})/4$ et RA²= $(\sqrt{5}-1)^2/8 + (\sqrt{5}-1)/2 + 1$

soit RA² = $(5 + \sqrt{5})/4$.

Il en résulte que RA = RP = RQ. Le point R est le centre du cercle (Γ) circonscrit au triangle APQ.

Comme $\angle PRQ = 90^{\circ}$, on en déduit $\angle PAQ = 45^{\circ}$