Pr. Cabri 908

Enunciado

Construir un triángulo ABC en el que la recta Incentro, I , Circuncentro, O, sea paralela a BC.

A)¿Para qué ángulos de A no es posible la construcción?

B) ¿Qué ángulo debe tener A para que d(I,O)=(1/3)(d(B,C))

Barroso, R. (2019): Comunicación personal.

Solución

por César Beade Franco

Apartado A

Consideremos un triángulo (1) de vértices A(eh, $\sqrt{(1+e^2)(1-h^2)}$), B(-1,0) y C(1,0).

Para este triángulo O=(0, $\frac{-2+e^2+h^2}{2\sqrt{(-1+e^2)(1-h^2)}}$) e I=(h, $\frac{\sqrt{(-1+e^2)(1-h^2)}}{1+e}$), donde las orde-

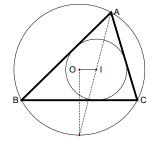
nadas indican la distancia de estos puntos al lado BC y han de coincidir si OI es paralela a BC.

Resovemos para h, $\frac{-2+e^2+h^2}{2\sqrt{\left(-1+e^2\right)\left(1-h^2\right)}} = \frac{\sqrt{\left(-1+e^2\right)\left(1-h^2\right)}}{1+e}$, obteniendo $h = \frac{\sqrt{(2-e)\ e}}{\sqrt{-1+2\ e}}$, lo que nos

indica que e≤2. Y sabemos que e≥1. Veremos como eso afecta al valor del ángulo A.

El vértice A queda ahora como A= $(\frac{\sqrt{e\ (2-e)}\ e}{\sqrt{-1+2\ e}},\ \frac{-1+e^2}{\sqrt{-1+2\ e}})$ (2). Así que

 $CosA = \frac{AB \cdot AC}{|AB| \cdot |AC|} = \frac{-1+e}{e}$ (3). Sus valores oscilan entre 0 y $\frac{1}{2}$, lo que indica que A varía de 60° (equilátero y segmento reducido a un punto) a 90° (rectángulo "degenerado" en B o C y segmento sobre el lado BC de longitud la mitad de BC).

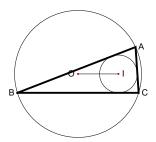


Out[255]=

Apartado B

El lado BC mide 2 y d(I,O)=|IO|= $\sqrt{((2-e)e)/(-1+2e)}$. Resolviendo la ecuación d(I,O)= $\frac{2}{3}$, obtenemos e= $\frac{1}{9}$ (5 + $\sqrt{61}$). Por tanto CosA= $\frac{-1+\frac{1}{9}\left(5+\sqrt{61}\right)}{\frac{1}{9}\left(5+\sqrt{61}\right)}$ = $\frac{1}{4}$ (9 - $\sqrt{61}$) \Rightarrow A=ArcCos($\frac{1}{4}$ (9 - $\sqrt{61}$)) \approx 72.6962°

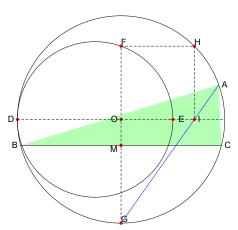
Out[437]=



Construcción

A partir del lado BC y el circuncentro O es posible dar una construcción euclídea del vértice A.

Para empezar, O está situado sobre la mediatriz de BC a una distancia de este lado que no supere $\frac{1}{2\sqrt{3}}$ la longitud de BC.



Out[429]=

Conocemos R=OB y r=OM, distancia de O al lado BC. Calcularemos d=OI usando la conocida relación d^2 = R^2 -2Rr, es decir construiremos un segmento de longitud $\sqrt{2\,\mathrm{Rr}}$ Trazamos un diámetro al circuncírculo paralelo a BC y sobre él un punto E tal que OE=2r. Como OD=R, la media proporcional de OD y OE medirá $\sqrt{2\,\mathrm{Rr}}$. Para obtenerla trazamos una circunferencia de diámetro DE. La recta OG perpendicula a OD por O la corta en F tal que OF= $\sqrt{2\,\mathrm{Rr}}$.

Una paralela a BC por F corta al circuncírculo en H. El teorema de Pitágoras aplicado al triángulo OFH nos asegura que FH=d.

El incentro es la proyección de H sobre el diámetro OD. La recta IG corta al circuncírculo en el vértice A del triángulo.

Notas

- (1) Un EH-triángulo. Ver, por ejemplo los problemas 689 u 897 de esta página donde se explica el significado de e y h.
- (2) Ecuación paramétrica de la curva que describe A.
- (3) Calculado con "Mathematica".