Construir un triángulo ABC en el que la recta Incentro, I, Circuncentro, O, sea paralela a BC.

A)¿Para qué ángulos de A no es posible la construcción?

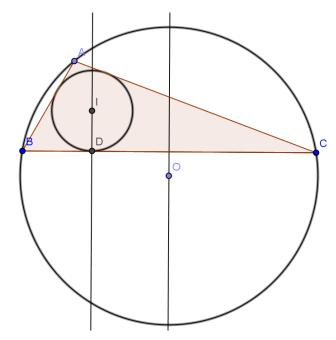
B) ¿Qué ángulo debe tener A para que d(I,O)=(1/3)(d(B,C))

Barroso, R. (2019): Comunicación personal.

Solución del director

A) El incentro de ABC siempre estará en el interior del triángulo.

Si el ángulo A es mayor de 90º, el circuncentro de ABC estará en el semiplano opuesto de A respecto a BC, por lo que no podrá ser OI paralelo a BC.



Así que tomemos un ángulo A menor que 90º.

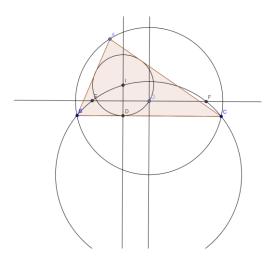
Sea O el circuncentro de ABC. Es $\angle BOC = 2\alpha$

El arco capaz de los posibles incentros I al variar A con α constante en la circunferencia circunscrita ABC constante es $\angle BIC = 90^{\circ} + \alpha/2$

Si trazamos por O una recta s paralela a BC, en caso de ser $90^{\circ}+\alpha/2 < 2\alpha$, el arco capaz no cortará s y por tanto no será posible la construcción.

Si $90^{\circ}+\alpha/2 = 2\alpha$, es decir, si $\alpha=60^{\circ}$, el arco capaz será tangente a s y habrá una solución.

Si $90^{\circ}+\alpha/2 > 2\alpha$, es decir, si $\alpha > 60^{\circ}$ el arco capaz será secante a s y habrá dos soluciones de la construcción pedida.



Una vez que tengamos los dos incentros, I_1 e I_2 las simétricas de BC respecto a BI_1 y a BI_2 al cortar a la circunscrita nos darán C_1 y C_2

B) Consideremos que sea OI=a/3

Sea T el punto en que la bisectriz interna de A corta de nuevo a la circunscrita.

Se tiene que TB=TI=TC=
$$\frac{a}{2\cos(\alpha/2)}$$

IO=a/3

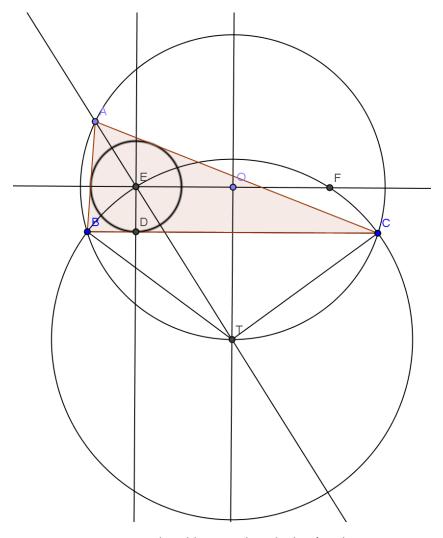
$$OT=R=\frac{a}{2sen(\alpha)}$$

El triángulo OIT es rectángulo en O, por lo que ha de ser:

$$\frac{a^2}{9} + \frac{a^2}{4 \operatorname{sen}^2(\alpha)} = \frac{a^2}{4 \cos^2(\alpha/2)}$$

Que nos lleva a $-4\cos^2(\alpha) + 18\cos(\alpha) - 5 = 0$

Y el resultado válido es cos (α)=0.29743, con lo que α =72.69 $^{\circ}$.



Para terminar, aunque el problema no lo pide, los ángulos en B y C son 86.21 y 21.08 los tres ángulos con aproximación a las centésimas.

Ricardo Barroso Campos

Jubilado.

Sevilla