Problema 908

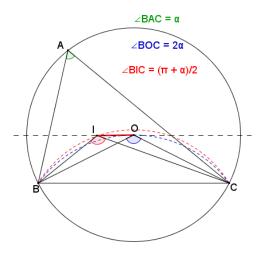
Construir un triángulo ABC en el que la recta Incentro, I, Circuncentro, O, sea paralela a BC.

A)¿Para qué ángulos de A no es posible la construcción?

B) ¿Qué ángulo debe tener A para que d(I,O)=(1/3)(d(B,C))

Barroso, R. (2019): Comunicación personal.

Solution proposée par Philippe Fondanaiche



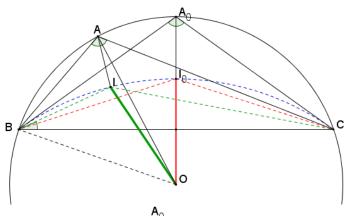
Question A)

Réponse : on peut construire le triangle ABC ssi $60^{\circ} \le \angle$ BAC < 90° . Soit \angle BAC = α . On en déduit \angle BIC = $(\pi + \alpha)/2$ et \angle BOC = 2α . Soit P un point courant de la parallèle (Δ) passant par O à la droite [BC]. Le triangle OBC est isocèle de sommet O et \angle BPC $\le \angle$ BOC avec égalité quand P est en O.

Dès lors la droite [IO] est parallèle à la droite [BC] si et seulement si \angle BIC $\le \angle$ BOC, soit $(\pi + \alpha)/2 \le 2\alpha$ ou encore $\alpha \ge \pi/3 = 60^\circ$. Par ailleurs comme \angle BOC $< \pi$, on a nécessairement $\alpha < \pi/2 = 90^\circ$ Lorsque $\alpha > \pi/3$, il est possible de contruire un triangle ABC tel que la droite [IO] est parallèle à la droite [BC]. Soit le cercle de centre 0 s'appuyant sur la corde tel que \angle BOC = $2\alpha > 120^\circ$. Lorsque A parcourt le grand arc de cercle (BC), la droite [IO] pivote autour du point O. Quand A vient en B, la droite [IO] se confond avec la droite [BO] de pente > 0 et quand A vient en C, la droite [IO] se confond avec la droite [OC] de pente < 0. Par continuité, il y a donc deux points de l'arc (BC) tels que la droite [IO] est parallèle à la droite [BC] de pente nulle.

Question B)

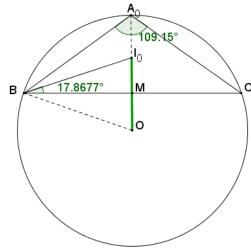
Réponse : avec \angle BAC = 72,695...° on peut construire le triangle ABC tel que IO = BC/3 Dans un premier temps, on démontre que dans un triangle quelconque IO = BC/3 ssi \angle BAC = 109,15...°



Lemme : dans un triangle BAC dont on connaît le côté BC et l'angle \angle BAC = α , le rapport IO/BC est minimal quand le triangle BAC est isocèle de sommet A_0 .

Démonstration : soit I_0 le centre du cercle inscrit du triangle A_0BC . Les deux points I et I_0 sont sur l'arc de cercle sous-tendu par la corde BC d'angle $\angle BIC = \angle BI_0C = (\pi + \alpha)/2$.

A l'évidence $OI \ge OI_0$.



On calcule alors dans le triangle isocèle A_0BC de sommet A_0 et d'angle $\angle BA_0C = \alpha$ le rapport I_0O/BC en fonction de α . D'où les relations d'angles :

$$\angle BA_0M = \alpha/2, \angle A_0BM = (\pi - \alpha)/2, \angle I_0BM = (\pi - \alpha)/4,$$

 $\angle OBM = \alpha - \pi/2.$

Sans perte de généralité on pose BC = 1.

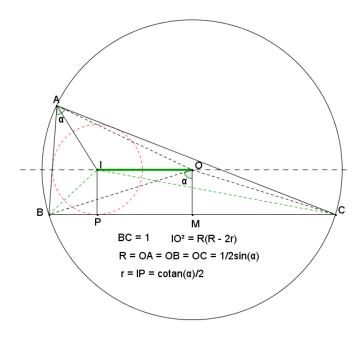
D'où
$$I_0O = I_0M + MO = \tan((\pi - \alpha)/4) + \tan(\alpha - \pi/2)$$

Le rapport $I_0O/BC = 1/3$ est obtenu avec l'équation $tan((\pi - \alpha)/4) + tan(\alpha - \pi/2) = 1/3$ qui donne $\alpha_0 = 109,15...$ °

Si $\alpha > \alpha_0$, alors IO/BC $> I_0$ O/BC > 1/3.

A l'inverse si $\alpha < \alpha_0$, $I_0B/BC < 1/3$ et il existe toujours un point A de l'arc (BC) tel que $IO/BC = 1/3 > I_0B/BC$.

Conclusion : pour tout angle α compris entre 60° et 109,15..°, il est possible de construire un triangle ABC dans lequel IO est parallèle à BC et IO = BC/3.



Calcul de l'angle α tel que les droites [IO] et [BC] sont parallèles et IO = BC/3.

Sans perte de généralité on pose BC = 1.

D'après la figure ci-contre on a les relations suivantes : R = rayon du cercle circonscrit au triangle $ABC = OB = 1/2sin(\alpha)$

r = rayon du cercle inscrit = IP = OM = $\cot \alpha$ /2. Par ailleurs d'après le <u>théorème d'Euler</u> on sait que la distance entre O et I est donnée par la formule $IO^2 = R(R - 2r)$.

D'où $1/2\sin(\alpha)$ * $(1/2\sin(\alpha) - \cos(\alpha)/\sin(\alpha) = (1/3)^2 = 1/9$, ce qui donne $4\cos^2(\alpha) - 18\cos(\alpha) + 5 = 0$, équation du deuxième degré qui a pour solution unique $\cos(\alpha) = (9 - \sqrt{61})/4$ soit $\alpha = 72,6962...$ °