Problema 909

- 1.- Construir un triángulo $\stackrel{\Delta}{ABC}$ tal que la recta GI (baricentro, incentro), sea paraela al lado BC
- 2.- Determinar los lados a, b, c si $d(G,I) = \frac{a}{9}$.

Solución:

a)

Sea conocidos $\overline{GI} = d$, $\overline{BC} = a$, ambos paralelos.

Sea r el radio de la circunferencia inscrita al triángulo $\stackrel{\Delta}{ABC}$

Sea M el punto medio del lado \overline{BC} .

Sea la bisectriz \overline{AV} .

Sea \overline{AH} altura del triángulo.

Los triángulos $\stackrel{\Delta}{AIG}$, $\stackrel{\Delta}{AVM}$ son semejantes y de razón 2:3 Aplicando el teorema de Tales:

$$\overline{VM} = \frac{3}{2}d$$

Los triángulos $\stackrel{\Delta}{AHV}$, $\stackrel{\Delta}{ITM}$ son semejantes y de razón 3:1 Aplicando el teorema de Tales:

$$\frac{\dot{AH}}{AH} = 3r$$

Calculando les áreas del triángulo $\stackrel{\Delta}{ABC}$:

$$\frac{a+b+c}{2}r = \frac{a \cdot 3r}{2}$$

Simplificando:

$$2a = b + c$$

Aplicando la propiedad de la bisectriz al triángulo $\stackrel{\Delta}{ABC}$

$$\frac{\frac{a}{2} - \frac{3}{2}d}{c} = \frac{\frac{a}{2} + \frac{3}{2}d}{b}$$

Simplificando:

$$\frac{a}{b+c} = \frac{3d}{b-c}$$

$$b - c = 6d$$

$$\begin{cases} b+c=2a\\ b-c=6d \end{cases}$$

$$b = a + 3d$$

$$c = a - 3d$$

El problema no tiene solución cuando a > 3d, b - c = 6d < a

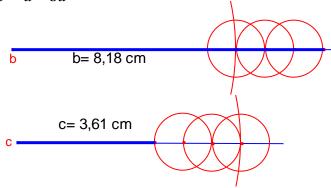
Construcción:

Sean dados a y d

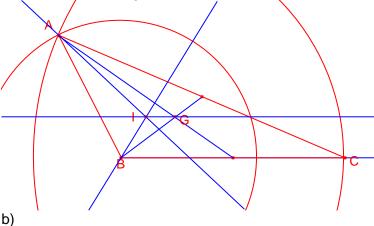
Construimos

$$\begin{cases} b = a + 3d \\ c = a - 3d \end{cases}$$

$$c = a - 3a$$



Construimos el triángulo $\stackrel{\Delta}{ABC}$



Sea r el radio de la circunferencia inscrita al triángulo $\stackrel{\Delta}{ABC}$

Sea M el punto medio del lado \overline{BC} .

Sea la bisectriz \overline{AV} .

Sea
$$\overline{AH}$$
 altura del triángulo.
Sea $\overline{GI}=\frac{a}{9}$ paral·lel al lado $\overline{BC}=a$.

Los triángulos $\stackrel{\Delta}{AIG}$, $\stackrel{\Delta}{AVM}$ són semejantes y de razón 2:3

Aplicando el teorema de Tales:

$$\overline{VM} = \frac{3}{2} \frac{a}{9} = \frac{a}{6}$$

Los triángulos $\stackrel{\Delta}{AHV}$, $\stackrel{\Delta}{ITM}$ son semejantes y de razón 3:1

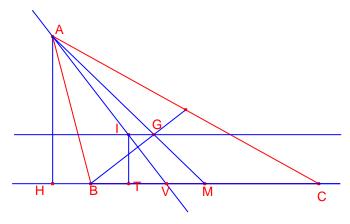
Aplicando el teorema de Tales:

$$\overline{AH} = 3r$$

Calculando les áreas del triángulo $\stackrel{\Delta}{ABC}$:

$$\frac{a+b+c}{2}r = \frac{a\cdot 3r}{2}$$

Simplificando:



$$2a = bc$$

Aplicando la propiedad de la bisectriz al triángulo $\stackrel{\Delta}{ABC}$ $\frac{a}{\frac{3}{c}} = \frac{2a}{\frac{3}{b}}$ Simplificando: b = 2c

$$\frac{a}{3} = \frac{2a}{3}$$

$$b = 2c$$

$$2a = 2c + c = 3c$$

$$4a = 3b = 6c$$

Entonces, la proporción entre los lados es:
$$a:b:c=\frac{1}{4}:\frac{1}{3}:\frac{1}{6}=3:4:2$$