Propuesto por Philippe Fondanaiche, webmaster de www.diophante.fr

Problema 915.- La mediatriz del segmento CM corta la recta BM en el punto A.

Sean G el baricentro, I el centro del círculo inscrito, O el centro del círculo circunscrito del triángulo ABC.

Sean P el punto de intersección de la recta AI con la recta BC, Q y R los puntos medios de los lados AB y AC.

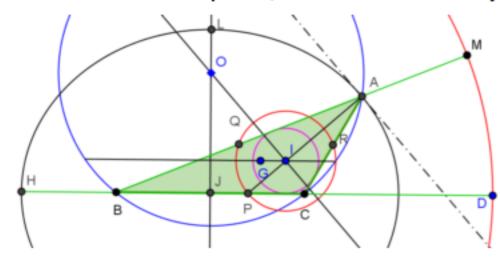
Q₁ Demostrar que la recta GI es paralela a la recta BC.

Q, Demostrar que la recta OI es perpendicular a la recta AI.

Q₃ Demostrar que el círculo circunscrito al triángulo PQR y el circulo inscrito del triangulo ABC son concéntricos.

Fondanaiche P. (2019): Comunicación personal

Solución de Saturnino Campo Ruiz, Profesor de Matemáticas jubilado, de Salamanca.



 $oldsymbol{Q_1}$ Según el problema 909 para que GI sea paralela a BC es necesario y suficiente que se cumpla la condición:

$$2a = b + c$$
.

Por construcción AM = AC por tanto AB + AM = AB + AC = BM = 2BC, es decir b + c = 2a, o bien 2s = 3a, con lo cual queda demostrada esta cuestión. El vértice A se mueve sobre una elipse de focos B y C y

distancia focal BC = a

 Q_2 . Si GI es paralelo a BC, tenemos que 2s = 3a. Tenemos que demostrar que el triángulo AIO es rectángulo en I. Esto es $OI^2 + AI^2 = OA^2 = R^2$. Para AI se tiene

$$AI^2 = \frac{s-a}{s} \cdot bc,$$

en las hipótesis que tenemos $\frac{s-a}{s} = \frac{1}{3}$, y por tanto $AI^2 = \frac{bc}{3}$.

Expresando el área del triángulo en función de los radios de los círculos inscrito y circunscrito

$$rs = \frac{abc}{4R} \implies 2rR = \frac{abc}{2s} = \frac{bc}{3}$$
, por tanto $AI^2 = 2rR$.

Según el teorema de Euler $OI^2=R^2-2rR=R^2-AI^2$. De donde resulta que AI, OI son perpendiculares.

 Q_3 . Según el t. de la bisectriz, Al corta a BC en P tal que $BP = \frac{c}{2}$ y $PC = \frac{b}{2}$.

El triángulo BPQ es isósceles y por ello la bisectriz de B es la mediatriz de PQ. Análogamente para el triángulo CPR. Por tanto I es el circuncentro de PQR.