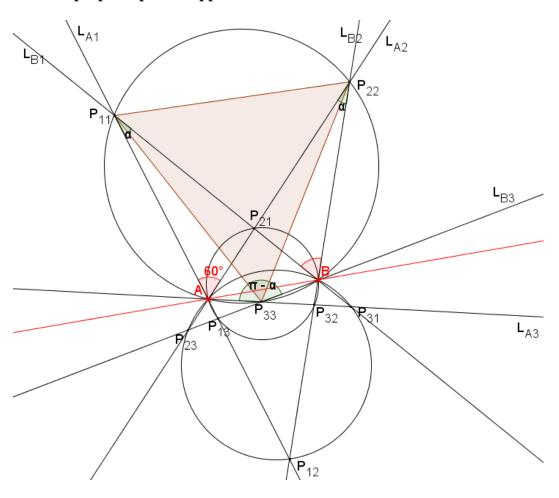
Problema 918

Teorema del faro. Dos conjuntos de 3 rectas de distancia angular de 120°, cada uno de los cuales contienen a puntos fijos A, y B, intersecan en 3² puntos que son los vértices de 3 triángulos equiláteros. Sus circuncírculos contienen a A y B.

Guy, R. K. (2007), El teorema del faro. Morley and Malfatti. Un manojo de paradojas. The American Mathematical Monthly, Vol 114, No 2, Feb 2007.

Solution proposée par Philippe Fondanaiche



On désigne par L_{A1} , L_{A2} et L_{A3} les trois droites qui passent par le point A et font entre elles des angles de $120^\circ = 2\pi/3$. De la même manière on désigne par L_{B1} , L_{B2} et L_{B3} les trois droites qui passent par le point B et font entre elles des angles de $120^\circ = 2\pi/3$.. On désigne par P_{ij} i=1 à 3, j=1 à 3, les neuf points qui sont à l'intersection des droites L_{Ai} et L_{Bi} .

Considérons les trois points P_{11} , P_{22} et P_{33} à l'intersection des droites L_{Ai} et L_{Bi} pour i=1,2,3. Comme les droites L_{Ai} et L_{Bi} font par construction le même angle α modulo π , ces trois points sont sur un même cercle passant par A et B (voir figure ci-dessus).

Il en résulte que $\angle P_{11}P_{22}P_{33} = \angle P_{11}AP_{22} = \angle P_{11}BP_{22} = \pi/3$.

D'autre part $\angle P_{22}P_{11}P_{33} = \pi - \angle P_{22}BP_{33} = \pi - 2\pi/3 = \pi/3$. D'où $\angle P_{11}P_{33}P_{22} = \pi/3$.

Le triangle P₁₁P₂₂P₃₃ est donc équilatéral de même que les triangles P₁₂P₂₃P₃₁ et P₁₃P₂₁P₃₂. Ces deux triangles sont inscrits dans deux cercles passant eux aussi par les points A et B. La droite AB est l'axe radical des trois cercles circonscrits aux triangles équilatéraux P₁₁P₂₂P₃₃, P₁₂P₂₃P₃₁ et P₁₃P₂₁P₃₂.