Proposal for publication

Mihaela Berindeanu, teacher, Bucharest, România

14 februarie 2018

Let ABC be an acute triangle, with circumcenter O and orthocenter H. Let A', B', C' be the intersection of AH, BH, CH with BC, AC, AB and A_1, B_1, C_1 be the intersection of AO, BO, CO with BC, AC, AB. If A'', B'', C'' are AA_1, BB_1, CC_1 midpoints, show that A'A'', B'B'', C'C'' have a common intersection point.

Solution:

Notations: \triangle ABC circumcircle $= \Gamma$, $AH \cap \Gamma = \{X\}$, $AO \cap \Gamma = \{Y\}$, $E \in A'A''$, A'E = EA'' Remarks:

- $X \in \Gamma$ is the orthocenter's symmetrical point towards $BC \Rightarrow HA' = A'X$;
- Y is the symmetrical point towards the circumcenter $\Rightarrow OA = OY$.

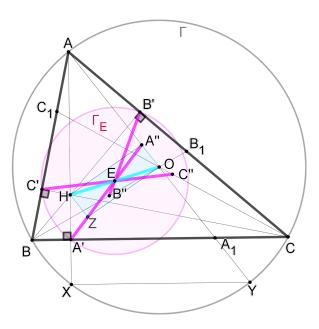


Figura 1:

• Prove that A'A'' cut OH in E and E is the center of \triangle ABC nine-point circle. HA' = A'X (because $X \in \Gamma$ is the orthocenter's symmetrical point towards BC) AY is the circumcircle's diameter of \triangle $ABC \Rightarrow \angle AA'A_1 = AXY = 90^\circ \Rightarrow XY \parallel A'A_1$, so, in \triangle AXY:

$$\frac{XA'}{AA'} = \frac{YA_1}{AA_1} \Rightarrow \frac{HA'}{AA'} = \frac{AY - AA_1}{AA_1} = \frac{2AO - 2AA''}{2AA''} = \frac{AO - AA''}{AA''} = \frac{OA''}{AA''}$$

Let $Z \in A'A''$, $HZ \parallel AY \Rightarrow \text{in } \triangle AA'A''$, $HZ \parallel A'A''$, so:

$$\frac{HA'}{AA'} = \frac{HZ}{AA''}$$

$$\frac{HA'}{AA'} = \frac{OA''}{AA''} = \frac{HZ}{AA''} \Rightarrow OA'' = HZ$$

From $HZ \parallel A''O$ and $HZ = A''O \Rightarrow HZOA''$ is a parallelogram $\Rightarrow HO \cap A'A'' = \{E\}$ and EH = EO, so E is the center of $\triangle ABC$ nine-point circle.

• Analogously is proved that

$$B'B'' \cap HO = E$$
$$C'C'' \cap HO = E$$

Conclusion:

$$A'A'' \cap B'B'' \cap C'C'' = \{E\}$$