Lema 1 G el centroide del $\triangle ABC$ y A', B'C' los puntos medios de los lados BC, AC, BC respectivamente. Sean O el circuncentro y H el ortocentro.del $\triangle ABC$ Siempre se verifica

$$a) \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = \overrightarrow{OH}$$

$$b) G \text{ es centroide del } \triangle A'B'C' \text{ y } \overrightarrow{OA'} + \overrightarrow{OB'} + \overrightarrow{OC'} = \overrightarrow{OH}$$

Lema 2 Sean A', B', C' puntos medios de los lados BC, AC, AB respectivamente del $\triangle ABC$ y sean U, V los centros de las circunferencias que pasan por ABB' y ACC' respectivamente. El punto medio, F, de OG es el centroide del $\triangle A'UV$

1. Propuesto por Mihaela Berindeanu, profesora, Bucharest, Romania.

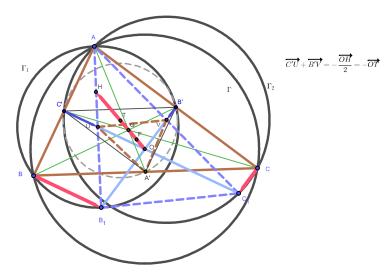
Problem 1 (921) Sea ABC un triángulo con ortocentro H, circuncírculo Γ y circuncentro O. Sean C'y B' los puntos medios de AB y AC respectivamente, y sean $\Gamma 1$ y $\Gamma 2$ los circuncírculos de ABB' Y ACC'.

Sean B_1 y C_1 los puntos diametralmente opuestos de A en los círculos $\Gamma 1$ y $\Gamma 2$.

Probar que vectorialmente $\overrightarrow{BB_1} + \overrightarrow{CC_1} + \overrightarrow{OH} = \overrightarrow{0}$

Berindeanu, Mihaela. (2019): Comunicación personal.

Solución



Datos:

Sean A', B', C' puntos medios de BC, AC, AB respectivamente

Sean G, H, O el centroide, ortocentro y circuncentro del $\triangle ABC$

El ortocentro del $\triangle A'B'C'$ es el circuncentro O del $\triangle ABC$

El centroide del $\triangle A'B'C'$ es el centroide G del $\triangle ABC$ (ver lema 1 en Apéndice)

El circuncentro del $\triangle A'B'C'$ es el centro, T de la circunferencia de los nueve puntos del $\triangle ABC$

Sean U,V los centros de las circunferencias que pasan por ABB^\prime y ACC^\prime

F punto medio de $OG \iff \overrightarrow{OF} = \frac{1}{2}\overrightarrow{OG} = \frac{1}{6}\overrightarrow{OH}$

Considerados los vectores $\overrightarrow{BB_1}$ y $\overrightarrow{CC_1}$ del problema. Vemos fácilmente por semejanza que

$$2\overrightarrow{C'U} = \overrightarrow{BB_1} \tag{a}$$

$$2\overrightarrow{B'V} = \overrightarrow{CC_1}$$
 (b)

Por lo que demostrar $\overrightarrow{BB_1} + \overrightarrow{CC_1} + \overrightarrow{OH} = \overrightarrow{0}$ es equivalente a demostrar

$$\overrightarrow{C'U} + \overrightarrow{B'V} + \frac{\overrightarrow{OH}}{2} = \overrightarrow{0}$$

 $^{{}^{1}3\}overrightarrow{OG} = \overrightarrow{OH}$

• Vamos pues a comprobar que $\overrightarrow{C'U} + \overrightarrow{B'V} + \overrightarrow{OH}_2 = \overrightarrow{0}$

Por el lema 2

F es el centroide del $\triangle A'UV$

$$\overrightarrow{FA'} + \overrightarrow{FU} + \overrightarrow{FV} = \overrightarrow{0}$$

$$\overrightarrow{OA'} + \overrightarrow{OU} + \overrightarrow{OV} - 3\overrightarrow{OF} = \overrightarrow{0}$$

Al ser F punto medio de OG y $\left[\begin{array}{c}\overrightarrow{OU} = \overrightarrow{OC'} + \overrightarrow{C'U} \\ \overrightarrow{OV} = \overrightarrow{OB'} + \overrightarrow{B'V}\end{array}\right]$

$$\overrightarrow{OA'} + \overrightarrow{OC'} + \overrightarrow{OB'} + \overrightarrow{C'U} + \overrightarrow{B'V} - \frac{1}{2}\overrightarrow{OH} = \overrightarrow{0}$$
 (a)

Como G es el centroide del $\triangle A'B'C'$ por lema1

$$\overrightarrow{OA'} + \overrightarrow{OC'} + \overrightarrow{OB'} = \overrightarrow{OH}$$
 (b)

sustituyendo (b) en (a)

$$\begin{array}{rcl} \overrightarrow{OH} + \overrightarrow{C'U} + \overrightarrow{B'V} - \frac{1}{2}\overrightarrow{OH} & = & \overrightarrow{0} \\ \overrightarrow{C'U} + \overrightarrow{B'V} + \frac{1}{2}\overrightarrow{OH} & = & \overrightarrow{0} \\ 2\overrightarrow{C'U} + 2\overrightarrow{B'V} + \overrightarrow{OH} & = & \overrightarrow{0} \\ \overrightarrow{BB_1} + \overrightarrow{CC_1} + \overrightarrow{OH} & = & \overrightarrow{0} \text{ c.q.d.} \end{array}$$