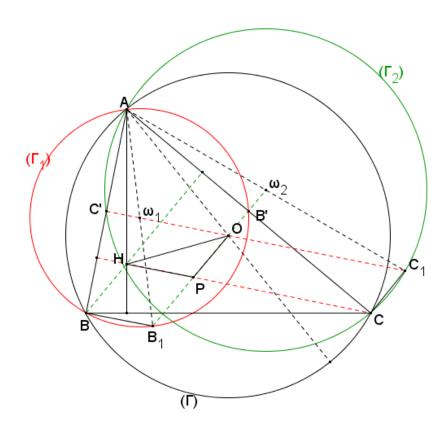
Problema 921

Sea ABC un triángulo con ortocentro H, circuncírculo Γ y circuncentro O. Sean C' y B' los puntos medios de AB y AC respectivamente , y sean Γ_1 y Γ_2 los circuncírculos de ABB' Y ACC' . Sean B_1 y C_1 los puntos diametralmente opuestos de A en los círculos Γ_1 y Γ_2 . Probar que vectorialmente BB $_1$ +CC $_1$ +OH=0

Berindeanu, M. (2019): Comunicación personal.

Solution proposée par Philippe Fondanaiche



Lemme : les droites [BH], [OB₁] et [CC₁] sont parallèles entre elles.

Par construction, H étant l'orthocentre du triangle ANC, la droite [BH] est perpendiculaire au côté AC. Le cercle (Γ_1) passant par les points A,B et B' et B₁ étant diamétralement opposé à A sur ce cercle, l'angle \angle AB'B₁ est droit. La droite [B'B₁] est la médiatrice de AC et passe par le centre O du cercle (Γ) circonscrit au triangle ABC. La droite [OB₁] est donc perpendiculaire à AC.

Le point C_1 étant diamétralement opposé à A sur le cercle (Γ_2) , l'angle \angle ACC₁ est droit. La droite $[CC_1]$ est donc perpendiculaire à AC.

De la même manière les droites [CH], [OC₁] et [BB₁] sont parallèles entre elles.

Soit P le point d'intersection des droites $[OB_1]$ et [CH].Il en résulte que les quadrilatères BB_1PH et CC_1OP sont des parallélogrammes.D'où $BB_1 = HP$ et $CC_1 = PO$.

On en déduit l'égalité vectorielle **BB**₁+**CC**₁+**OH**=0. C.q.f.d.