Quincena del 16 al 31 de Octubre de 2019

Propuesto por Mihaela Berindeanu, profesora, Bucharest, Romania.

Problema 921.- Sea ABC un triángulo con ortocentro H, circuncírculo Γ y circuncentro O.

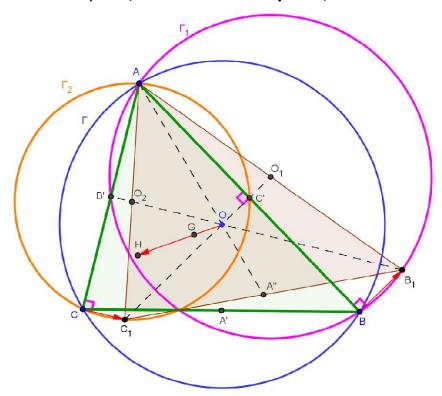
Sean C' y B' los puntos medios de AB y AC respectivamente, y sean Γ_1 y Γ_2 los circuncírculos de ABB' y ACC'.

Sean B_1 y C_1 los puntos diametralmente opuestos de A en los círculos Γ_1 y Γ_2 .

Probar que vectorialmente $\overrightarrow{BB_1} + \overrightarrow{CC_1} + \overrightarrow{OH} = 0$

Berindeanu, M. (2019): Comunicación personal.

Solución de Saturnino Campo Ruiz, Profesor de Matemáticas jubilado, de Salamanca.



a) El circuncentro O es el baricentro del triángulo AB_1C_1 .

 C_1O_1 y B_1O_2 son medianas del triángulo AB_1C_1 . Al ser C_1 el punto diametralmente opuesto a A, C_1C' es perpendicular a AB y es su mediatriz pues C' es el punto medio de AB. Por eso C_1C' ha de pasar por O y también por O_1 (según la definición de Γ_1).

En consecuencia los puntos de la cuaterna C_1 , O, C' y O_1 están alineados.

De forma similar también están alineados los puntos B_1 , O, B' y O_2 y de todo ello se deduce que el punto O es el baricentro del triángulo AB_1C_1 .

b)
$$\overrightarrow{BB_1} + \overrightarrow{CC_1} + \overrightarrow{OH} = 0$$

De lo anterior se tiene $3O=A+B_1+\mathcal{C}_1$ y entonces $H+B_1+\mathcal{C}_1=H+3O-A$.

Según la propiedad de la recta de Euler 20G = GH de donde H = 3G - 20 y entonces

$$H + B_1 + C_1 = H + 30 - A = 3G + O - A = (A + B + C) + O - A = B + C + O$$

En resumen: $H+B_1+C_1=B+C+O$ que equivale a $\overrightarrow{BB_1}+\overrightarrow{CC_1}+\overrightarrow{OH}=0$.