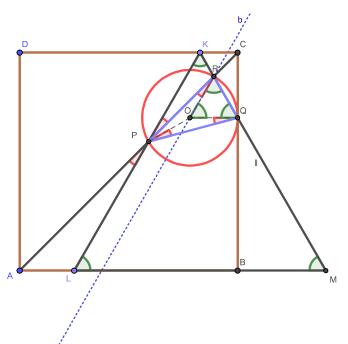
Problema Sea ABCD un cuadrado, K un punto sobre [CD]. Sean M y L dos puntos sobre la recta AB tal que KLM sea un triángulo equilátero. Sean P la intersección de (LK) con (AC) y Q la intersección de (MK) y (BC), R la intersección de (PC) y (QK). Sea 1 la circunferencia circunscrita al triángulo PQR.

Demostrar que 1 es tangente a (BC) en Q

Aymé, J. L. (2019): Comunicación personal.

Solución



En el $\triangle CRK$ vemos que: $\widehat{RKC}=60^o$, $\ \widehat{KCR}=45^o$ y $\widehat{CRK}=75^o$ Como $\triangle ARM\sim\triangle CRK$

$$\widehat{RMA} = 60^o\,,~\widehat{MAR} = 45^o$$
y $\widehat{ARM} = 75^o$

En $\triangle LAP$ vemos que $\widehat{LAP}=45^o$, $~\widehat{PLA}=120^o$ y $\widehat{APL}=15^o$ Como $\triangle LAP\sim\triangle CPK$

$$\widehat{CPK} = 15^{\circ}$$
, $\widehat{PKC} = 120^{\circ}$ y $\widehat{KCP} = 75^{\circ}$

Sea O el circuncentro del triángulo PQR

Trazando desde el punto R una paralela al lado KL y desde Q una paralela al lado LM obtenemos también el punto O. El $\triangle ROQ$ es equilátero al ser semejante al $\triangle LKM$ y además

$$\widehat{PRO} = \widehat{RPK} = 15^{o}$$

El ángulo \widehat{QPR} por ser ángulo inscrito en (O) verifica que $\widehat{QPR} = \frac{\widehat{QOR}}{2} = 30^o$

De todo lo anterior; deducimos que $\widehat{RQP}=75^o$ y como $\widehat{RQO}=60^o$ podemos afirmar que $\widehat{OQP}=15^o$

El triángulo PQR es isósceles siendo PQ=PR. La recta OP es mediatriz del segmento QR y bisectriz del vértice P del $\triangle PQR$

Es evidente que la circunferencia circunscrita (O) del $\triangle PQR$ es tangente al segmento CD en el punto Q ya que el segmento OQ es \bot a BC