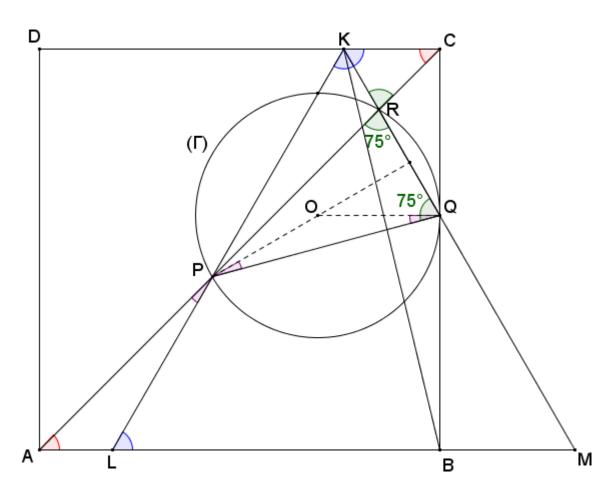
Problema 924

Sea ABCD un cuadrado, K un punto sobre [CD].Sean M y L dos puntos sobre la recta AB tal que KLM sea un triángulo equilátero.Sean P la intersección de (LK) con (AC) y Q la intersección de (MK) y (BC), R la intersección de (PC) y (QK).Sea 1 la circunferencia circunscrita al triángulo PQR.

Demostrar que 1 es tangente a (BC) en Q.

Aymé, J. L. (2019): Comunicación personal.

Solution proposée par Philippe Fondanaiche



Lemme: les triangles KRC et KQP sont semblables

Démonstration : les deux triangles ont le même angle au sommet K avec \angle PKQ = \angle CKQ = 60°. Par ailleurs : - les angles aux sommets K,C et R du triangle KCR sont respectivement égaux à 60°,45° et 75°.

D'où KR/KC =
$$\sin(45^{\circ})/\sin(75^{\circ}) = \sin(45^{\circ})/\sin(45^{\circ} + 30^{\circ}) = \sqrt{3} - 1$$

- le triangle KCQ est un demi triangle équilatéral et les deux triangles APL et CPK sont semblables (tous les angles égaux deux à deux). Donc KQ/KP = 2KC/KP = 2AL/PL. Comme \angle PAL = 45° et \angle APL = 15°, on a AL/PL = $\sin(15^\circ)/\sin(45^\circ) = \sin(45^\circ - 30^\circ)/\sin(45^\circ) = (\sqrt{3} - 1)/2$. D'où KQ/KP = $\sqrt{3} - 1$ et KR/KC = HQ/KP.

Il en résulte que \angle KQP = \angle RQP = \angle KRC = \angle PRQ = 75°. Le triangle PQR est isocèle de sommet P avec \angle QPR = 30°. Le cercle (Γ) circonscrit au triangle PQR a pour centre le point O tel que OP est médiatrice du côté QR et bissectrice de l'angle \angle QPR = 30°. On a donc \angle OPQ = \angle OQR = 15° puis \angle OQK = 75° – 15° = 60°. La droite OQ parallèle au côté CD est perpendiculaire à BC. Le cercle (Γ) est tangent en Q au côté BC.