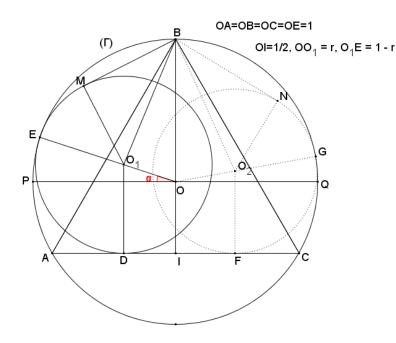
Gutiérrez, A. (2019): Gogeometry.com

Solution proposée par Philippe Fondanaiche



Soient O le centre du cercle circonscrit (Γ) au triangle équilatéral ABC, PQ le diamètre de (Γ) passant par O, I le milieu du côté BC, O₁ et O₂ les centres des deux cercles tangents en D et F au côté AC et en E et G au cercle (Γ), $\alpha = \angle POE$.

Sans perte de généralité, on pose OA = OB = OC = OE = 1 et $OO_1 = r$. D'où OI = 1/2 et $O_1E = 1 - r$

Lemme: BM = 2DI

Démonstration .On a les relations suivantes :

 $2DI = 2OO_1 \cos(\alpha) = 2r\cos(\alpha), BM^2 = O_1B^2 - (1 - r)^2,$

Comme $O_1B^2 = (1 - r\sin(\alpha))^2 + r^2\cos^2(\alpha) = 1 + r^2 - 2r\sin(\alpha)$, on obtient $BM^2 = 2r(1 - \sin(\alpha))$.

Par ailleurs $O_1D = O_1E = 1 - r = OI + r\sin(\alpha) = 1/2 + r\sin(\alpha)$. D'où $2r = 1/(1 + 1\sin(\alpha))$

Il en résulte : BM² = $(1 - \sin(\alpha))/(1 + \sin(\alpha))$ et $4DI^2 = \cos^2(\alpha)/(1 + \sin(\alpha))^2$.

Or $1 - \sin(\alpha) = \cos^2(\alpha)/(1 + \cos(\alpha))$, ce qui entraine BM² = 4DI² puis BM = 2DI. C.q.f.d.

De la même manière on démontre que BN = 2FI.

D'où la relation BM + BN = 2DF.