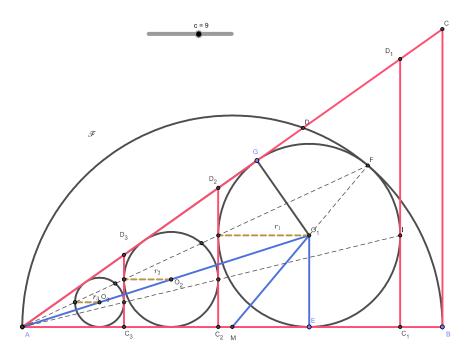
Problema Dado un triángulo rectángulo ABC, se consideran el (segundo) punto D de intersección entre la recta AC y la circunferencia con diámetro AB y la circunferencia (O_1) inscrita en el triángulo mixtilíneo DAB. A continuación, para cada $n \in \mathbb{N} \sim \{1\}$, se considera la circunferencia (O_n) inscrita en el triángulo AC_nD_n , siendo C_n un punto de la recta ABy D_n un punto de la recta AC tales que la recta C_nD_n es paralela a la recta CB y tangente a la circunferencia (O_{n-1}) tal como se muestra en la siguiente figura



Calcular en función de la longitudes a,b,c de los lados del triángulo ABC y de la forma más simplificada posible, la suma total de las áreas encerradas por las circunferencias de la sucesión $\{(O_n)\}_{n\in\mathbb{N}}$

Propuesto por Miguel-Ángel Pérez García-Ortega (2019)

Solución

Lo voy a resolver por Geometría Analítica

Supongamos $A(0,0) B(c,0), C(c,a), M\left(\frac{c}{2},0\right)$

Catetos AB=c, BC=a. Hipotenusa $\stackrel{\sim}{AC}=b$ $(b^2=c^2+a^2).$ Semiperímetro $s=\frac{a+b+c}{2}$

 \mathcal{F} semicircunferencia de diámetro AB

F semicircunferencia de diametro
$$AB$$

$$(O_1) \text{ circunferencia tal que } \begin{bmatrix} (O_1) \cap AB = E \\ (O_1) \cap \mathcal{F} = F \\ (O_1) \cap AC = G \end{bmatrix}$$
 Si $\alpha = \widehat{BAC}$ como tan $\frac{\alpha}{2} = \sqrt{\frac{1-\cos\alpha}{1+\cos\alpha}} = \sqrt{\frac{b-c}{b+c}} = \frac{b-c}{a}$ entonces la ecuación de la recta AO_1 es

$$r \equiv y = \frac{b-c}{a} x$$

La recta AO_1 es la bisectriz interior del ángulo α Vamos a determinar las coordenadas de O_1

Como $O_1 \in r$ tendremos que sus coordenadas son

$$O_1\left(x_0, \frac{b-c}{a}x_0\right)$$
 siendo $x_0 \in (0, c)$
 $O_1E = r_1 = \frac{b-c}{a}x_0 \text{ y } AE = x_0$

Por otra parte; al ser $(O_1) \cap \mathcal{F} = F$ tenemos que

$$\left\| \overrightarrow{MO_1} \right\| = MF - O_1 F = MF - O_1 E = \frac{c}{2} - \frac{b - c}{a} x_0 \tag{1}$$

Como $\left\| \overrightarrow{O_1 M} \right\| = \left\| \left(\frac{c}{2} - x_0, -\frac{b-c}{a} x_0 \right) \right\| = \sqrt{\left(\frac{c}{2} - x_0 \right)^2 + \frac{(b-c)^2}{a^2} x_0^2}$ sustituyendo en (1) y elevando al cuadrado tenemos la ec.

$$\left(\frac{c}{2} - x_0\right)^2 + \frac{(b-c)^2}{a^2}x_0^2 = \left(\frac{c}{2} - \frac{b-c}{a}x_0\right)^2$$

Reduciendo términos,

$$x_0^2 - cx_0 + \frac{c(b-c)}{a}x_0 = 0 \iff x_0 = \begin{cases} 0 \notin (0,c) \\ c\frac{(a-b+c)}{a} = \frac{2c(s-b)}{a} \end{cases}$$

El punto O_1 tiene de coordenadas

$$O_1\left(\frac{2c(s-b)}{a}, \frac{2c(s-b)(b-c)}{a^2}\right)$$
 Fijémonos que
$$\begin{bmatrix} AE = \frac{2c(s-b)}{a} \\ r_1 = O_1E = \frac{2c(s-b)(b-c)}{a^2} \end{bmatrix}$$

Vamos ahora a calcular los segmentos AC_1 y AC_2

$$AC_1 = AE + r_1 = \frac{2c(s-b)}{a} + \frac{2c(s-b)(b-c)}{a^2} = \frac{4c(s-b)(s-c)}{a^2}$$
$$AC_2 = AE - r_1 = \frac{2c(s-b)}{a} - \frac{2c(s-b)(b-c)}{a^2} = \frac{4c(s-b)^2}{a^2}$$

Para obtener la circunferencia (O_2) del problema bastará con aplicarle a (O_1) una homotecia de centro A y radio k siendo

$$k = \frac{AC_2}{AC_1} = \frac{\frac{4c(s-b)^2}{a^2}}{\frac{4c(s-b)(s-c)}{a^2}} = \frac{s-b}{s-c}$$

Lo que nos permite afirmar que el radio r_2 de (O_2) será $r_2 = \frac{s-b}{s-c} r_1$

Si a (O_2) le aplicamos la misma homotecia obtendremos (O_3) . Siendo su radio $r_3 = \frac{s-b}{s-c}r_2 = \left(\frac{s-b}{s-c}\right)^2 r_1$

Reiterando este proceso n veces el radio de (O_n) será $r_n = \left(\frac{s-b}{s-c}\right)^{n-1} r_1$

Como la superficie del círculo (O_n) es

$$S_n = \pi r_n^2 = \pi \left(\frac{s-b}{s-c}\right)^{2n-2} \frac{4c^2(s-b)^2(b-c)^2}{a^4}$$

La suma de las infinitas áreas de los circulos (O_n) cuyo primer término $S_1 = \pi \frac{4c^2(s-b)^2(b-c)^2}{a^4}$ y razón¹ $\left(\frac{s-b}{s-c}\right)^2$ es

$$\sum_{n=1}^{\infty} S_n = \frac{\pi \frac{4c^2(s-b)^2(b-c)^2}{a^4}}{1 - \left(\frac{s-b}{s-c}\right)^2} = \frac{\pi \frac{4c^2(s-b)^2(b-c)^2}{a^4}}{\frac{(s-c)^2 - (s-b)^2}{(s-c)^2}} = \pi \frac{4c^2(s-b)^2(b-c)(s-c)^2}{a^5}$$

 $^{1 \}frac{s-b}{s} < 1$

Vamos a transformar la expresión obtenida para ${\cal S}$

$$S = \pi \frac{4c^2(s-b)^2(b-c)(s-c)^2}{a^5}$$

donde
$$s = \frac{a+b+c}{2}$$

Como $(s-b)^2(s-c)^2 = \left[\frac{(a-b+c)}{2}\frac{(a+b-c)}{2}\right]^2 = \left[\frac{a^2-(b-c)^2}{4}\right]^2 = 2\left[\frac{b^2-c^2-(b-c)^2}{4}\right]^2$
Operando y simplificando:

$$(s-b)^2(s-c)^2 = \frac{1}{4}c^2(b-c)^2$$

Así pues sustituyendo en la expresión $\,\, \mathrm{de} \, S$

$$S = \pi \frac{c^4 (b-c)^3}{a^5}$$

 $a^2 = b^2 - c^2$