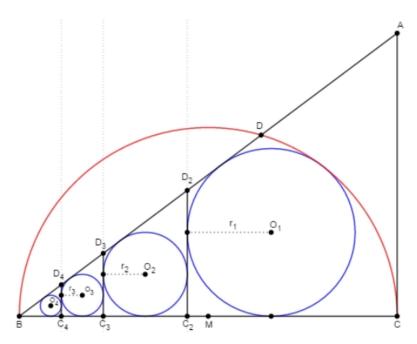
Problema 927

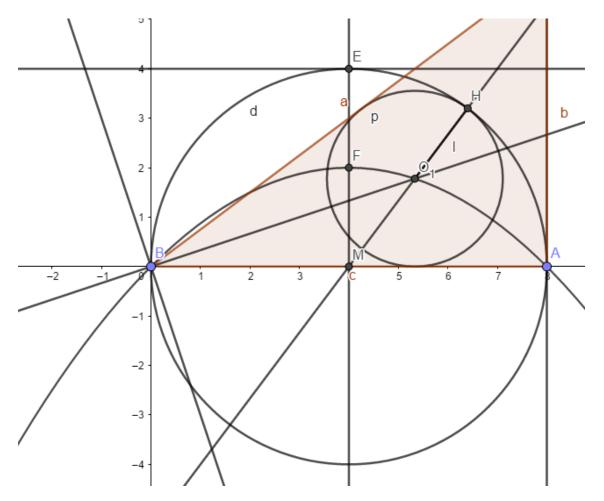
Dado un triángulo rectángulo ABC, se consideran el (segundo) punto D de intersección entre la recta AB y la circunferencia con diámetro BC y la circunferencia (O_1) inscrita en el triángulo mixtilíneo DBC. A continuación, para cada $n \in \mathbb{N} \setminus \{1\}$, se considera la circunferencia (O_n) inscrita en el triángulo BC_nD_n , siendo C_n un punto de la recta BC y D_n un punto de la recta AC tales que la recta C_nD_n es paralela a la recta CA y tangente a la circunferencia (O_{n-1}) , tal como se muetra en la siguiente figura:



Calcular, en función de las longitudes a, b y c de los lados del triángulo ABC y de la forma más simplificada posible, la suma total de las áreas encerradas por las circunferencias de la sucesión $((O_n))_{n\in\mathbb{N}}$.

Pérez, M.A. (2019): Comunicación personal.

Tomo un caso concreto de ser B(0,0), C(8,0) y A(6,0)



Para obtener O₁, la bisectriz de B es y=1/3 x

El centro de las circunferencias tangentes a la de centro M es la parábola de centro M y directriz y=4, 8y=- x^2 +8x .

Así el primer centro O₁ es (16/3, 16/9) y

La primera área de la primera circunferencia es $\pi(16/9)^2$

El nuevo radio para la circunferencia circunscrita al triángulo 32/9 ,24/9, 40/9 es 8/9 y la segunda área a sumar es por tanto, es $\pi(8/9)^2$

Así, el tercer triángulo es 16/9,12/9,20/9 y la tercera área es es $\pi(4/9)^2$.

Y sucesivamente...

La serie en cuestión será

$$\pi(16/9)^2 + \pi(8/9)^2 + \pi(4/9)^2 + \cdots = S$$

$$\pi(8/9)^2 + \pi(4/9)^2 + \cdots = S(1/4)$$

De donde $S=(1024/243)\pi$