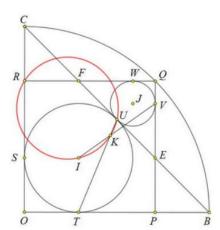
Problema 929.-

Se considera el cuadrante del círculo (0, OB).



Sea OPQR el cuadrado inscrito en el triángulo mixtilíneo OBC. Sean $E = PQ \cap BC$, $F = RQ \cap BC$.

Sean los puntos I,J incentros de ΔOBC , ΔFQE , respectivamente.

Sean los puntos de dichos triángulos de tangencia con sus circunferencias inscritas. Sea, por fin, $K = IV \cap TU$.

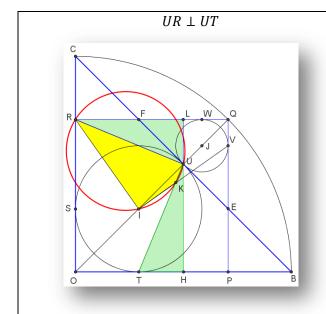
Probar que *I*, *K*, *U*, *R* son concíclicos.

Suppa, E. (2019): Comunicación personal.

Solución de Florentino Damián Aranda Ballesteros, Córdoba (España).

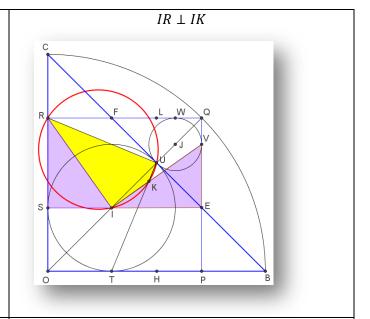
Sea el triángulo rectángulo isósceles OBC de catetos OB = OC = a. De la igualdad entre las expresiones del área del triángulo OBC, $S = \frac{1}{2}a^2 = \frac{1}{2}r\cdot\left(2a+\sqrt{2}a\right) \to r = a\left(1-\frac{\sqrt{2}}{2}\right)$, siendo r el radio de la circunferencia inscrita a dicho triángulo. De este modo, el lado I del cuadrado OPQR, $l = a - r = a\frac{\sqrt{2}}{2}$. Por otra parte, el triángulo isósceles QER tiene como catetos $QE = QF = l - r = a(\sqrt{2} - 1)$. De este modo, el radio r' de la circunferencia inscrita en dicho triángulo tendrá como valor $r' = (\sqrt{2} - 1)r$. Observamos que l = 2r + r'.

Probaremos que $UR \perp UT$; $IR \perp IK$. Así, de este modo los puntos IKUR serán concíclicos.



Sea I el lado del cuadrado OPQR.

Probaremos que UR y UT son perpendiculares. Esto es así, ya que U, L y H están alineados, donde L y H, son los puntos medios de FQ y TP, respectivamente. Entonces los triángulos rectángulos UHT y ULR son equivalentes por ser $UL = HT = \frac{1}{4} \ l$. Por tanto, $UR \perp UT$.



Sean I el lado del cuadrado OPQR y r y r', los radios de las circunferencias inscritas en los triángulos OBC y QEF, respectivamente. La paralela media SE del cuadrado OPQR pasa por el punto I ya que OS = PE = r. Entonces los triángulos rectángulos ISR y VEI son equivalentes por ser:

$$\{IS=r;RS=l-r\}\,y \\ \{EI=l-r,EV=l-r-r^{'}=r. \\ \text{Por tanto, } IR\perp IK.$$