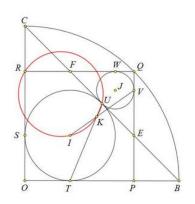
Problema 929

- $\star \odot (OBC)$ quarter of circle (O, OB)
- \star OPQR square inscribed in mixtilinear triangle OBC
- $\star E = PQ \cap BC, F = RQ \cap BC$
- * I, J incenters of $\triangle OBC$, $\triangle FQE$, resp.
- \star S, T, U, V, W touch points
- $\star K = IV \cap TU$

Prove that: I. K. U. R are concyclic Suppa E. (communicación personal)



Solution proposée par Philippe Fondanaiche

W

Lemme n°1: Les segments UR et UT sont perpendiculaires deux à deux

Le point U se projette en X sur OB et Y sur QR. On pose OP = OR = 1.On en déduit $OB = \sqrt{2}$ et les coordonnées de U ($\sqrt{2}$ /2, $\sqrt{2}$ /2). Le triangle rectangle RUY a pour cathètes YR = $\sqrt{2}$ /2 et YU = 1 - $\sqrt{2}$ /2. Le centre I du cercle inscrit dans le triangle OBC est tel que $IU^2 = IT^2$ et $OU = 1 = IT \sqrt{2} + IU$ On en déduit : OT = IT = $\sqrt{2}$ – 1 puis TX = $\sqrt{2}$ /2 – ($\sqrt{2}$ – 1) = 1 – $\sqrt{2}$ /2. Par ailleurs UX = $\sqrt{2}$ /2. Les triangles rectangles RUY et UTX sont donc isométriques. D'où RU = UT et \angle RUT = 90°

Lemme n°2: Les segments IR et IV sont perpendiculaires deux à deux

Les triangles rectangles isocèles OBC, QEF, OIT et QJV sont tous semblables.

On a QE = PQ - PE =
$$1 - (\sqrt{2} - 1) = 2 - \sqrt{2}$$
.

D'où JV/OT = QE/OB =
$$\sqrt{2} - 1$$
, JV = OV = IT.($\sqrt{2} - 1$) = ($\sqrt{2} - 1$)² = $3 - 2\sqrt{2}$,

$$VE = 1 - PE - VQ = \sqrt{2} - 1 = OT = IS.$$

Les triangles rectangles RSI et VEI sont isométriques avec RS = IE = $2 - \sqrt{2}$ et IS = VE.

D'où IR = IV et
$$\angle$$
 RIV = 90°

Corollaire. Les droites IV et TU se coupent en un point K tel que les quatre points I,K,U er R sont sur un même cercle de diamètre RK dans lequel sont inscrits les deux triangles rectangles RIK et RUK.