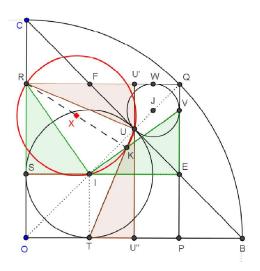
Propuesto por Ercole Suppa.

Problema 929.- Sean (OBC) el primer cuadrante del círculo (O,OB); OPQR cuadrado inscrito en el triángulo mixtilíneo OBC; $E=PQ\cap BC$, $F=RQ\cap BC$; I, J incentros de ΔOBC , ΔFQE respectivamente; S,T,U,V,W puntos de contacto; $K=IV\cap TU$.

Demostrar que I, K, U, R son concíclicos.

Suppa, E. (2019) comunicación personal.

Solución de Saturnino Campo Ruiz, Profesor de Matemáticas jubilado, de Salamanca.



Supongamos que el radio del círculo (O,OBC) es la unidad. De ahí la hipotenusa mide $BC=\sqrt{2};$ el lado del cuadrado OPQR es $OP=\frac{\sqrt{2}}{2}$ y el radio de la circunferencia inscrita en ΔOBC es $r_I=s-BC=1-\frac{BC}{2}=1-\frac{\sqrt{2}}{2}=OB-OP.$

Por ello
$$QE = OP - PE = \sqrt{2} - 1 = \sqrt{2}r_I$$
.

Para demostrar que el cuadrilátero IKUR es cíclico bastará que demostremos que los triángulos RIK y KUR son rectángulos en I y U respectivamente. Lo haremos en dos fases:

a) Los triángulos $\triangle RSI$ y $\triangle IEV$ son congruentes

RS = IE y ambos son rectángulos, bastará por tanto demostrar que $EV = r_I$.

Los triángulos rectángulos OBC y QEF; la razón de semejanza que pasa del primero al segundo es $k=\frac{QE}{OB}=\sqrt{2}r_I$.

De igual manera $EV=k\cdot CS$, donde $CS=1-r_I$, por tanto $EV=\sqrt{2}r_I\cdot (1-r_I)=r_I$.

Con ello se demuestra que $RI \perp IK$.

b) Los triángulos rectángulos $\Delta RU'U$ y $\Delta U''UT$ son congruentes

Trazamos una paralela a PQ por U que corta a QR en U' y a OB en U''.

Los puntos T, I, F están alineados, con ello, FU' = U'U = TU''; RU' = OU'' = UU'' y con esto la congruencia queda demostrada. Los ángulos que concurren en U son los desiguales, que son complementarios, por tanto RU y UT son perpendiculares.