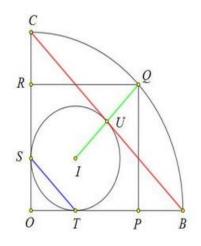
Problema 931

- $\star \odot (OBC)$ quarter of circle (O, OB)
- * I incenter of $\triangle OBC$
- \star S, T, U touch points
- * OPBR square inscribed in mixtilinear triangle OBC

Prove that:
$$\frac{1}{BC} + \frac{1}{IQ} = \frac{1}{TS}$$



Propuesto por Ercole Suppa.

Solución:

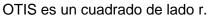
Q es el punto medio del cuadrante. Entonces, O, I, U i Q están alineados.

Siga $r=\overline{IT}=\overline{OT}=\overline{IU}$ radio de la circunferencia inscrita en el triángulo $\stackrel{\Delta}{OBC}$ Por ser ángulo inscrito y abarcar un arco de 45°

$$\angle CBQ = \frac{1}{2}45^{\circ}$$

$$\angle IBU = \frac{1}{2}45^{\circ}$$

Entonces los triángulos rectángulos IUB, QUB son iguales. Entonces, $\overline{QU} = \overline{IU} = r$



$$\overline{TS} = \overline{OI} = r\sqrt{2}$$

$$\overline{QI} = 2r$$

$$\overline{BC} = 2 \cdot \overline{BU} = 2 \cdot \overline{OU} = 2(1 + \sqrt{2})r$$

$$\frac{1}{\overline{BC}} + \frac{1}{\overline{IQ}} = \frac{1}{2(1+\sqrt{2})r} + \frac{1}{2r} = \frac{1}{r} \left(\frac{\sqrt{2}-1}{2} + \frac{1}{2} \right) = \frac{1}{r} \frac{\sqrt{2}}{2}$$

$$\frac{1}{\overline{TS}} = \frac{1}{r\sqrt{2}} = \frac{1}{r} \frac{\sqrt{2}}{2}$$
 Entonces,
$$\frac{1}{\overline{BC}} + \frac{1}{\overline{IO}} = \frac{1}{\overline{TS}}$$

