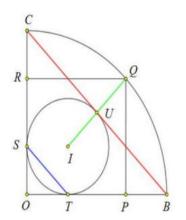
Problema 931

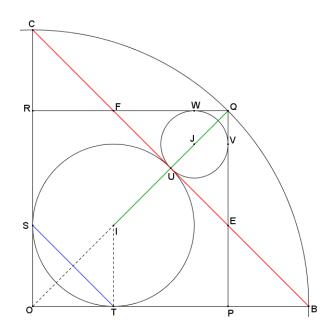
- $\star \odot (OBC)$ quarter of circle (O,OB)
- \star I incenter of $\triangle OBC$
- \star S, T, U touch points
- ⋆ OPBR square inscribed in mixtilinear triangle OBC

Prove that:
$$\frac{1}{BC} + \frac{1}{IQ} = \frac{1}{TS}$$

Suppa E. (communicacion personal)



Solution proposée par Philippe Fondanaiche



On pose OP = OR = 1.On en déduit $OB = \sqrt{2}$ et BC = 2

Le centre I du cercle inscrit dans le triangle OBC est tel que $IU^2 = IT^2$ et $OU = 1 = IT \sqrt{2} + IU$

On en déduit : OT = IT =
$$\sqrt{2} - 1$$
 puis ST = OI = $\sqrt{2} (\sqrt{2} - 1) = 2 - \sqrt{2}$.

Par ailleurs
$$OQ = \sqrt{2}$$
. D'où $IQ = OQ - OI = \sqrt{2} - OI = 2\sqrt{2} - 2$.

Il en résulte que
$$1/BC + 1/IQ = 1/2 + 1/(2\sqrt{2} - 2) = 1/2 + (\sqrt{2} + 1)/2 = 1 + \sqrt{2}/2$$

Or
$$1/ST = 1/(2 - \sqrt{2}) = (2 + \sqrt{2})/2 = 1 + \sqrt{2}/2$$
.

On obtient bien l'égalité 1/BC + 1/IQ = 1/ST