- \star ABCD square with center O
- $\star AE = ED$
- \star OF \perp EB

Prove that:

- EF + FO = FB
- the incircles of $\triangle AFE$ and $\triangle ABF$ are congruent

Propuesto por Ercole Suppa

Solución de Ricard Peiró:

Sea $\overline{AB} = c$, lado del cuadrado ABCD.

 \overline{EO} es paralelo al lado \overline{AB} .

Sea F' la proyección de F sobre el lado \overline{AD}

Aplicando el teorema de Pitágoras al triángulo rectángulo $\stackrel{\Delta}{ABE}$:

$$\overline{BE} = \frac{\sqrt{5}}{2}c$$

Los triángulos $\stackrel{\Delta}{ABE}$, $\stackrel{\Delta}{FEO}$ son semejantes.

Aplicando el teorema de Tales:

$$\frac{\overline{EF}}{c} = \frac{\frac{1}{2}c}{\frac{\sqrt{5}}{2}c} = \frac{\sqrt{5}}{5}, \frac{\overline{OF}}{\frac{1}{2}c} = \frac{\frac{1}{2}c}{\frac{\sqrt{5}}{2}c} = \frac{\sqrt{5}}{5}$$

Entonces.

$$\overline{EF} = \frac{\sqrt{5}}{5}c, \overline{OF} = \frac{\sqrt{5}}{10}c$$

$$\overline{BF} = \overline{BE} - \overline{EF} = \frac{\sqrt{5}}{2}c - \frac{\sqrt{5}}{5}c = \frac{3\sqrt{5}}{10}c$$

Los triángulos \overrightarrow{ABE} , $\overrightarrow{F'FE}$ son semejantes.

Aplicando el teorema de Tales:

$$\frac{\overline{FF'}}{c} = \frac{\frac{\sqrt{5}}{5}c}{\frac{\sqrt{5}}{2}c} = \frac{2}{5}, \frac{\overline{EF'}}{\frac{1}{2}c} = \frac{\frac{\sqrt{5}}{5}c}{\frac{\sqrt{5}}{2}c} = \frac{2}{5}$$

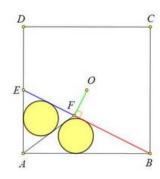
Entonces,

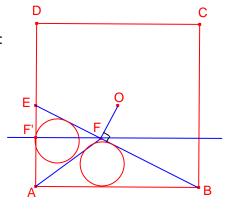
$$\overline{FF'} = \frac{2}{5}c, \overline{EF'} = \frac{1}{5}c$$

$$\overline{AF'} = \overline{BE} - \overline{EF'} = \frac{1}{2}c - \frac{1}{5}c = \frac{3}{10}c$$

Aplicando el teorema de Pitágoras al triángulo rectángulo $\stackrel{\Delta}{AFF'}$:

$$\overline{AF} = \frac{1}{2}c$$





a)
$$\overline{EF} + \overline{FO} = \frac{\sqrt{5}}{5}c + \frac{\sqrt{5}}{10}c = \frac{3\sqrt{5}}{10}c$$

$$\overline{FB} = \frac{3\sqrt{5}}{10}c$$
 Entonces,
$$\overline{EF} + \overline{FO} = \overline{FB}$$
 b)

Sea r el radio de la circunferencia inscrita al triángulo $\stackrel{\Delta}{AFE}$

El área del triángulo
$$\stackrel{\Delta}{AFE}$$
 es:
$$S_{AFE} = \frac{1}{2} \cdot \overline{AE} \cdot \overline{FF'} = \frac{1}{2} (\overline{AE} + \overline{EF} + \overline{AF}) r$$

$$\frac{1}{2} \frac{1}{2} c \cdot \frac{2}{5} c = \frac{1}{2} \left(\frac{1}{2} c + \frac{\sqrt{5}}{5} c + \frac{1}{2} \right) r$$

Resolviendo la ecuación:

$$r = \frac{5 - \sqrt{5}}{20}c$$

Sea s el radio de la circunferencia inscrita al triángulo $\stackrel{\Delta}{ABF}$

El área del triángulo $\stackrel{\Delta}{ABF}$ es:

$$S_{ABF} = \frac{1}{2} \cdot \overline{AB} \cdot \overline{AF'} = \frac{1}{2} (\overline{AB} + \overline{BF} + \overline{AF}) s$$

$$\frac{1}{2} \cdot c \cdot \frac{3}{10} c = \frac{1}{2} \left(c + \frac{3\sqrt{5}}{10} c + \frac{1}{2} \right) s$$

$$s = \frac{5 - \sqrt{5}}{20} c$$

Los dos radios de les circunferencias inscritas son iguales.