Problema 932

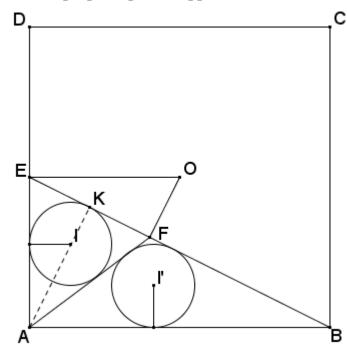
- \star ABCD square with center O
- $\star AE = ED$
- \star OF \perp EB

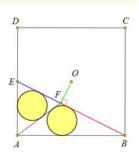
Prove that:

- EF + FO = FB
- the incircles of $\triangle AFE$ and $\triangle ABF$ are congruent

Suppa E. (communicacion personal)

Solution proposée par Philippe Fondanaiche





Q₁ On pose sans perte de généralité AB = AD = 2. D'où AE= 1 et EB = $\sqrt{5}$. Le triangle rectangle OEF est semblable au triangle rectangle ABE. D'où OE= 1, FO = $1/\sqrt{5}$, EF = $2/\sqrt{5}$.

Il en résulte FB = EB – EF = $\sqrt{5} - 2/\sqrt{5} = 3/\sqrt{5} = EF + FO$.

Q₂ Le point A se projette en K sur BE. Les triangles AEK et OEF qui ont même hypoténuse et les trois angles égaux sont isométriques. D'où EK = FO = $1/\sqrt{5}$. Le point K est donc le milieu du segment EF. Le triangle AEF est isocèle de sommet A et AF = AE = 1.

D'où aire du triangle AEF = AK*FE/2 = 2/5 et aire du triangle ABF = aire du triangle ABE – aire du triangle AEF = 3/5.

Soient r et r' les rayons des cercles inscrits dans les triangles AEF et ABF.

On a r = 2aire AEF/(AE + AF + EF) = $4/5 / (1 + 1 + 2/\sqrt{5}) = 2/(5 + \sqrt{5})$.

Par ailleurs r' = 2aire ABF/(AB + BF + FA) = 6/5 / (2 + 3/ $\sqrt{5}$ + 1) = 2/(5 + $\sqrt{5}$)

On obtient r = r'.