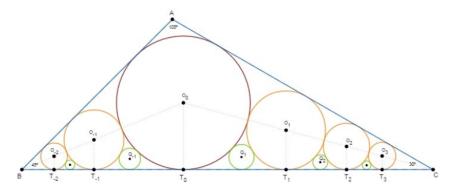
Probema Miguel Angel Pérez García Ortega

Ejercicio 2505. Dado un triángulo ABC con inradio r_0 y tal que:

$$\begin{cases}
\triangle CBA = \frac{\pi}{4} \\
\triangle ACB = \frac{\pi}{6}
\end{cases}$$

se consideran las sucesiones de circunferencias $((O_n))_{n\in\mathbb{N}\bigcup\{0\}}, ((O_{-n}))_{n\in\mathbb{N}\bigcup\{0\}}, ((Q_n))_{n\in\mathbb{N}}$ y $((Q_{-n}))_{n\in\mathbb{N}}$ que se muestran en la siguiente figura:



donde, para cada $n \in \mathbb{N}$, se verifica que:

- ① La circunferencia (O_n) es tangente a la circunferencia (O_{n-1}) y a las rectas CB y CA.
- ② La circunferencia (O_{-n}) es tangente a la circunferencia (O_{-(n-1)}) y a las rectas BA y BC.
- ③ La circunferencia (Q_n) es tangente a las circunferencias (O_{n-1}) y (O_n) y a la recta BC.
- 4 La circunferencia (Q_{-n}) es tangente a las circunferencias $(O_{-(n-1)})$ y (O_{-n}) y a la recta BC.

Calcular, en función de r_0 , el término general de la sucesión $(s_n)_{n\in\mathbb{Z}^*}$ de radios de la sucesión de circunferencias $((O_n))_{n \in \mathbb{Z}^*}$.

Solución

Se puede demostrar que si denominamos BC=a entonces los lados del $\triangle ABC$ son $AB=\frac{a(\sqrt{6}-\sqrt{2})}{2}, AC=a(\sqrt{3}-1)$

Su semiperímetro $s = \frac{1}{2} \left(\frac{a(\sqrt{6} - \sqrt{2})}{2} + a(\sqrt{3} - 1) + a \right) = \frac{1}{4} a \left(2\sqrt{3} - \sqrt{2} + \sqrt{6} \right)$

Su altura relativa al vértice B es $\frac{a(\sqrt{3}-1)}{2}$ y su superficie $S_{\triangle ABC}=\frac{a^2(\sqrt{3}-1)}{4}$ Por todo ello, el radio r_0 de su incírculo es $r_0=\frac{\frac{a^2(\sqrt{3}-1)}{4}}{\frac{1}{4}a\left(2\sqrt{3}-\sqrt{2}+\sqrt{6}\right)}=\left(\sqrt{3}-\frac{3}{2}-\frac{3}{4}\sqrt{6}+\frac{5}{4}\sqrt{2}\right)a$

De momento este dato no lo voy a utilizar ; puesto que lo que me piden es expresar los radios de los círculos (Q_1) , (Q_{-1}) , (Q_2) , (Q_{-2}) en función de r_0

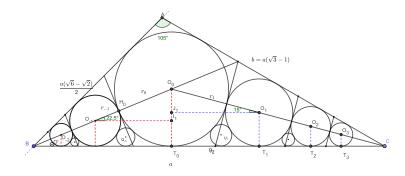


Figura 3

 $\bullet \ \ \text{Vamos a empezar por calcular los radios} \ r_{-1}, r_{-2}, r_{-3}.... \text{de los c\'{r}culos respectivos} \ (O_{-1}) \ , (O_{-2}) \ , (O_{-3}) \ \text{situados a la izquier-portugation} \ r_{-1}, r_{-2}, r_{-3}.... \text{de los c\'{r}culos respectivos} \ (O_{-1}) \ , (O_{-2}) \ , (O_{-3}) \ \text{situados a la izquier-portugation} \ r_{-1}, r_{-2}, r_{-3}.... \text{de los c\'{r}culos respectivos} \ (O_{-1}) \ , (O_{-2}) \ , (O_{-3}) \ \text{situados a la izquier-portugation} \ r_{-1}, r_{-2}, r_{-3}.... \text{de los c\'{r}culos respectivos} \ (O_{-1}) \ , (O_{-2}) \ , (O_{-3}) \ \text{situados a la izquier-portugation} \ r_{-1}, r_{-2}, r_{-3}.... \text{de los c\'{r}culos respectivos} \ (O_{-1}) \ , (O_{-2}) \ , (O_{-3}) \ \text{situados a la izquier-portugation} \ r_{-1}, r_{-2}, r_{-3}.... \text{de los c\'{r}culos respectivos} \ r_{-1}, r_{-2}, r_{-3}... \text{de los c\'{r}culos res$ da de O_0

1

Si nos fijamos en el gráfico el $\triangle O_0 O_{-1} I_1$ rectángulo en I_1 tenemos $O_0 O_{-1} = r_{-1} + r_0, O_0 I_1 = r_0 - r_{-1}$

Por Pitágoras $O_{-1}I_1=2\sqrt{r_0r_{-1}}$ y como $ang(I_1O_{-1}O_0)$ es 22,5° $(\frac{\pi}{8})$. En virtud del lema 1 (Ver apéndice) tenemos

$$\tan\frac{\pi}{8} = \sqrt{2} - 1 = \frac{r_0 - r_{-1}}{2\sqrt{r_0r_{-1}}} \text{ Resolviendo la ecuación } (r_{-1} < r_0)$$

$$r_{-1} = r_0 \left(7 - 4\sqrt{2} - 2\sqrt{20 - 14\sqrt{2}}\right)$$

Es digno de resaltar que la proporción entre los radios es

$$\frac{r_{-1}}{r_0} = \left(7 - 4\sqrt{2} - 2\sqrt{20 - 14\sqrt{2}}\right)$$

Consideramos la homotecia, h, de centro B y factor de escala $\frac{r_{-1}}{r_0}$

Si aplicamos dicha homotecia al círculo (O_0) obtenemos (O_{-1}) . Si se la aplicamos a (O_{-1}) obtenemos (O_{-2}) y así sucesivamente; por lo que la sucesión de los radios es:

$$r_{-1} = r_0 \left(7 - 4\sqrt{2} - 2\sqrt{20 - 14\sqrt{2}} \right)$$

$$r_{-2} = r_0 \left(7 - 4\sqrt{2} - 2\sqrt{20 - 14\sqrt{2}} \right)^2$$
....
$$r_{-n} = r_0 \left(7 - 4\sqrt{2} - 2\sqrt{20 - 14\sqrt{2}} \right)^n$$

Vamos ahora a considerar los círculos (O_0) , (O_{-1}) y (Q_{-1}) de manera que (Q_{-1}) sea tangente a los otros círculos exteriormente e interiormente a la recta BC:.

Podemos expresar su radio s_{-1} en función de los radios r_0 y r_{-1} de los circulos respectivos (O_0) y (O_{-1}) en virtud del lema 2 (Ver apéndice).

Por ello

$$s_{-1} = \frac{r_0 r_{-1}}{(\sqrt{r_0} + \sqrt{r_{-1}})^2} = \frac{r_0^2 \left(7 - 4\sqrt{2} - 2\sqrt{20 - 14\sqrt{2}}\right)}{\left(\sqrt{r_0} + \sqrt{r_0 \left(7 - 4\sqrt{2} - 2\sqrt{20 - 14\sqrt{2}}\right)}\right)^2} = r_0 \left(\frac{3}{2}\sqrt{2} - 7\sqrt{10 - 7\sqrt{2}} - 5\sqrt{20 - 14\sqrt{2}} + \frac{5}{2}\right)$$

Si aplicamos la homotecia h anterior al círculo (Q_{-1}) obtendremos Q_{-2} . Si se la aplicamos a (Q_{-2}) obtenemos (Q_{-3}) y así sucesivamente por lo que la sucesión de los radios es:

$$s_{-1} = r_0 \left(\frac{3}{2} \sqrt{2} - 7\sqrt{10 - 7\sqrt{2}} - 5\sqrt{20 - 14\sqrt{2}} + \frac{5}{2} \right)$$

$$s_{-2} = \left(7 - 4\sqrt{2} - 2\sqrt{20 - 14\sqrt{2}} \right) \left(\frac{3}{2} \sqrt{2} - 7\sqrt{10 - 7\sqrt{2}} - 5\sqrt{20 - 14\sqrt{2}} + \frac{5}{2} \right) r_0$$

$$s_{-3} = \left(7 - 4\sqrt{2} - 2\sqrt{20 - 14\sqrt{2}} \right)^2 \left(\frac{3}{2} \sqrt{2} - 7\sqrt{10 - 7\sqrt{2}} - 5\sqrt{20 - 14\sqrt{2}} + \frac{5}{2} \right) r_0$$
....
$$s_{-n} = \left(7 - 4\sqrt{2} - 2\sqrt{20 - 14\sqrt{2}} \right)^{n-1} \left(\frac{3}{2} \sqrt{2} - 7\sqrt{10 - 7\sqrt{2}} - 5\sqrt{20 - 14\sqrt{2}} + \frac{5}{2} \right) r_0$$

• Vamos ahora a calcular los radios r_1, r_2, r_3de los círculos respectivos $(O_1), (O_2), (O_3)$situados a la derecha de O_0

Si nos fijamos en el gráfico el $\triangle O_0O_1J_1$ rectángulo en J_1 tenemos $O_0O_1=r_1+r_0, O_0J_1=r_0-r_1$ Por Pitágoras $O_1J_1=2\sqrt{r_0r_1}$ y como $ang(I_1O_1O_0)$ es 15^o $(\frac{\pi}{12})$. En virtud del lema 1 tenemos

$$\tan \frac{\pi}{12} = 2 - \sqrt{3} = \frac{r_0 - r_1}{2\sqrt{r_0 r_1}}$$
 Resolviendo la ecuación ($r_1 < r_0$)
$$r_1 = r_0 \left(10\sqrt{2} - 8\sqrt{3} - 6\sqrt{6} + 15\right)$$

Es digno de resaltar que la proporción entre los radios es

$$\frac{r_1}{r_0} = \left(10\sqrt{2} - 8\sqrt{3} - 6\sqrt{6} + 15\right)$$

Consideramos la homotecia, h', de centro C y factor de escala $\frac{r_1}{r_0}$

Si aplicamos dicha homotecia al círculo (O_O) obtenemos (O_1) . Si se la aplicamos a (O_1) obtenemos (O_2) y así sucesivamente; por lo que la sucesión de los radios es:

$$r_{1} = r_{0} \left(10\sqrt{2} - 8\sqrt{3} - 6\sqrt{6} + 15 \right)$$

$$r_{2} = r_{0} \left(10\sqrt{2} - 8\sqrt{3} - 6\sqrt{6} + 15 \right)^{2}$$

$$r_{-3} = r_{0} \left(10\sqrt{2} - 8\sqrt{3} - 6\sqrt{6} + 15 \right)^{3}$$
...
$$r_{-n} = r_{0} \left(10\sqrt{2} - 8\sqrt{3} - 6\sqrt{6} + 15 \right)^{n}$$

Vamos ahora a considerar los círculos (O_0) , (O_1) y $(Q_{,1})$ de manera que Q_1 sea tangente a los otros círculos exteriormente e interiormente a la recta BC:.

Podemos expresar su radio s_1 en función de los radios r_0 y r_1 de los circulos respectivos (O_0) y (O_1) en virtud del lema 2. Por ello

$$s_1 = \frac{r_0 r_1}{(\sqrt{r_0} + \sqrt{r_1})^2} = \frac{r_0^2 \left(10\sqrt{2} - 8\sqrt{3} - 6\sqrt{6} + 15\right)}{\left(\sqrt{r_0} + \sqrt{r_0 \left(10\sqrt{2} - 8\sqrt{3} - 6\sqrt{6} + 15\right)}\right)^2} = r_0 \left(\frac{5}{2}\sqrt{3} - 3\sqrt{2} - 2\sqrt{2}\sqrt{3} + 5\right)$$

Si aplicamos la homotecia h' anterior al círculo (Q_1) obtendremos Q_2 . Si se la aplicamos a (Q_2) obtenemos (Q_3) y así sucesivamente por lo que la sucesión de los radios es:

$$s_{1} = r_{0} \left(\frac{5}{2} \sqrt{3} - 3\sqrt{2} - 2\sqrt{2}\sqrt{3} + 5 \right)$$

$$s_{2} = \left(10\sqrt{2} - 8\sqrt{3} - 6\sqrt{6} + 15 \right) \left(\frac{5}{2} \sqrt{3} - 3\sqrt{2} - 2\sqrt{2}\sqrt{3} + 5 \right) r_{0}$$

$$s_{3} = \left(10\sqrt{2} - 8\sqrt{3} - 6\sqrt{6} + 15 \right)^{2} \left(\frac{5}{2} \sqrt{3} - 3\sqrt{2} - 2\sqrt{2}\sqrt{3} + 5 \right) r_{0}$$
...
$$s_{n} = \left(10\sqrt{2} - 8\sqrt{3} - 6\sqrt{6} + 15 \right)^{n-1} \left(\frac{5}{2} \sqrt{3} - 3\sqrt{2} - 2\sqrt{2}\sqrt{3} + 5 \right) r_{0}$$

Por todo lo anterior vamos a definir la sucesión de los radios s_n siendo $n \in \mathbb{Z}$

$$s_n = \begin{cases} \left(7 - 4\sqrt{2} - 2\sqrt{20 - 14\sqrt{2}}\right)^{-n-1} \left(\frac{3}{2}\sqrt{2} - 7\sqrt{10 - 7\sqrt{2}} - 5\sqrt{20 - 14\sqrt{2}} + \frac{5}{2}\right) r_0 & \text{si } n \in \mathbb{Z}^- \sim \{0\} \\ r_0 & \text{si } n = 0 \\ \left(10\sqrt{2} - 8\sqrt{3} - 6\sqrt{6} + 15\right)^{n-1} \left(\frac{5}{2}\sqrt{3} - 3\sqrt{2} - 2\sqrt{2}\sqrt{3} + 5\right) r_0 & \text{si } n \in \mathbb{Z}^+ \sim \{0\} \end{cases}$$

1. Apéndice

Lema1 Dadas dos circunferencias tangentes entre sí de centros O_0, O_1 y radios r_0 y r_1 respectivamente y sea B el centro de similitud externa de ambas circunferencias .Si conocemos el ángulo formado por la recta BO_0 con una de las rectas tangentes a ambas circunferencias entonces se verifica que

$$\tan \alpha = \frac{|r_1 - r_0|}{2\sqrt{r_1 r_0}}$$

Demostración

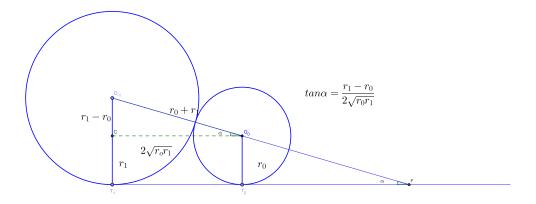


Figura 1

Lema 2 Si se tienen dos circunferencias tangentes de radios r_0 y r_1 y una recta tangente BC exterior a ambas, se puede trazar otra circunferencia de radio r_3 tangente a las circunferencias anteriores e inscrita en el triángulo formado por éstas y la recta BC. El radio de dicha circunferencia es

$$r_2 = \frac{r_0 r_1}{(\sqrt{r_0} + \sqrt{r_1})^2}$$

Demostración

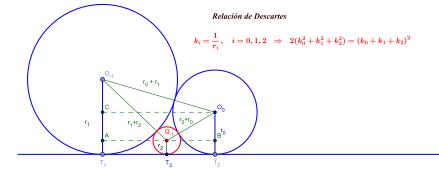


Figura 2