Propuesto por Jean Louis Aymé

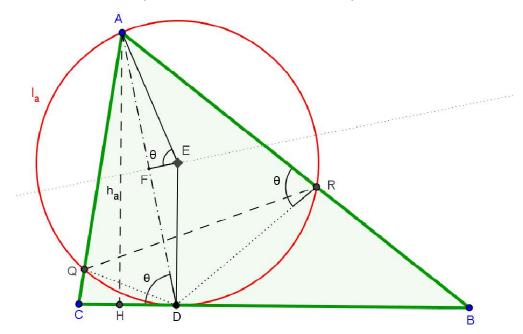
Problema 934

- 1. ABC un triángulo
- 2. D un punto sobre el segmento BC
- 3. l_a la circunferencia que pasa por \emph{A} y es tangente a \emph{BC} en \emph{D}
- 4. \it{Q} , \it{R} los otros dos puntos de intersección de \it{l}_a con los lados \it{AC} , \it{AB} .

Demostrar: $AD^2 \cdot BC = AB \cdot AC \cdot QR$.

Aymé, J. L. (2019): comunicación personal.

Solución de Saturnino Campo Ruiz, Profesor de Matemáticas jubilado, de Salamanca.



Para dibujar l_a una vez elegido D, se traza la mediatriz de AD y una perpendicular a BC por D. Estas rectas definen el centro E de la circunferencia, (cada punto D en BC, define un punto E sobre una parábola de foco A y directriz BC).

Para el triángulo ΔAQR , inscrito en l_a se tiene $\frac{QR}{sen\ A}=2AE$.

El ángulo $\sphericalangle ADC$ es igual a la mitad del ángulo central $\sphericalangle AED$, así pues, del triángulo rectángulo ΔAEF podemos obtener

$$AD = 2AE \cdot \text{sen } \theta = 2AE \cdot \frac{h_a}{AD} \Rightarrow AD^2 = 2AE \cdot h_a = \frac{h_a \cdot QR}{sen A}.$$

Del área [ABC] del triángulo se obtiene $\frac{h_a \cdot BC}{sen A} = AB \cdot AC$.

Finalmente

$$AD^2 \cdot BC = \frac{h_a \cdot BC \cdot QR}{sen A} = AB.AC.QR$$