

Aportaciones para la solución del director

La construcción de la figura es:

Se traza la recta O_1O_2 . Un radio cualquiera O_1M_1 de la circunferencia de centro O_1 y un radio O_2M_2 paralelo de la circunferencia de centro O_2 . La recta M_1M_2 interseca a la recta O_1O_2 en N. Trazamos las circunferencias de diámetros NO_1 y NO_2 que nos cortarán a las circunferencias de centro O_1 en D y de centro O_2 en E. Sea JD=x, DE=I, $JO_1=m$.

Tenemos por semejanza de triángulos, $\frac{a}{x} = \frac{b}{x+l} \frac{x}{m} = \frac{x+l}{m+a+b}$

De donde se tienen :
$$m=rac{a(a+b)}{b-a}x=2arac{\sqrt{ab}}{b-a}$$
 , $l=2\sqrt{ab}$

Por otra parte, el triángulo rectángulo AFB es tal que FC es su altura, por lo que

FC=
$$\sqrt{AC~CB}=\sqrt{2a~2b}=2\sqrt{ab}$$
 Así DFEC es un rectángulo de diagonales $2\sqrt{ab}$

CF es la altura del triángulo FAB, por lo que CF= $\sqrt{2a \ 2b} = 2\sqrt{ab}$

FECD es un rectángulo así DE y Cf son las diagonales iguales. DE= $2\sqrt{a\ b}$

Así DC es paralelo a FE y EC a FD. Por lo que D, A y F están alineados así como F, E, yB.

Ello significa que Los triángulos rectángulos FDE y FBA son semejantes de razón la división entre las hipotenusas.

Tenemos que $\triangle AFB = (2a+2b)\sqrt{ab}$

Por ello,
$$\frac{\Delta DEF}{\Delta BFA} = \frac{4 a b}{(2a+2b)^2}$$
Luego $\Delta DEF = \frac{2 a b \sqrt{a b}}{a+b}$

El segmento AR es paralelo al DE.

Si tomamos por O₁ una recta paralela a DE, cortará al radio O₂E en V.

 O_1V =DE, y el triángulo O_1VO_2 es rectángulo en V.

El triángulo ${\rm O_1VO_2}$ es semejante al ARB de razón ½, por lo que AR=2 ${\rm O_1V}$ = 2 DE=4 \sqrt{ab}

El triángulo GIH mediante un giro de centro N y ángulo GND se transforma en el triángulo DVF, siendo V el pie de la altura de F en el triángulo DFE.

Sea F* el punto de corte de la recta FV con la circunferencia (AB).

Los triángulos FVD y FAF* son semejantes.

En FAF* tenemos FF* =2a+2b, hipotenusa.

Al ser AR perpendicular a FF*, la altura de esta hipotenusa es $\frac{AR}{2}=2\sqrt{ab}$

Así [FAF*]=
$$\frac{(2 \ a + 2b)2\sqrt{a \ b}}{2}$$
=2(a+b) $\sqrt{a \ b}$

Por otra parte del triángulo DVF conocemos su altura FV= $\frac{2ab}{a+b}$

Ricardo Barroso Campos. Jubilado. Sevilla.