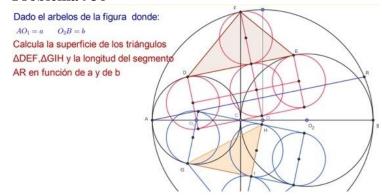
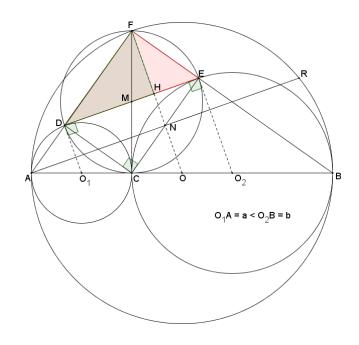
Problema 936



Solution proposée par Philippe Fondanaiche



On peut alléger la figure de l'énoncé et la ramener à la figure ci-contre, dans laquelle il s'agit de déterminer les aires des triangles DEF et DHF et la longueur du segment AR.

Les deux cercles de centres O₁ et O₂ et de rayons a et b, tangents entre eux et tangents intérieurement à un cercle de rayon a + b donnent la configuration bien connue de l'<u>arbelos</u> et nous admettrons les propriétés suivantes qui sont présentées dans de nombreux articles sur Internet :

- OF est perpendiculaire en H à DF et en N à AR qui est parallèle à DE,
- CDFE est un rectangle,
- ADEN est un parallélogramme,

- DE =
$$2\sqrt{ab}$$
, AR = $4\sqrt{ab}$,

- CD =
$$\frac{2a\sqrt{b}}{\sqrt{a+b}}$$
 et CE = $\frac{2b\sqrt{a}}{\sqrt{a+b}}$

- aire du triangle DEF =
$$\frac{2ab\sqrt{ab}}{a+b}$$

- aire du triangle DHF =
$$\frac{2ab^2 \sqrt{ab}}{(a+b)^2}$$