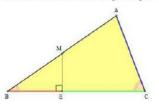
Problema 937

Dado un triángulo ABC, se consideran el punto medio M del segmento AB y su proyección ortogonal E sobre la recta BC, tal como se muestra en la siguiente figura:

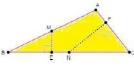


Probar que

 $AC + CE = 3BE \Leftrightarrow \triangle ACB = 2 \triangle CBA$

(propuesto por Ercole Suppa)

② Dado un triángulo ABC, se consideran los puntos medios M y N de los segmentos AB y BC, respectivamente, y sus respectivas proyecciones ortogonales E y F sobre las rectas BC y AC, tal como se muestra en la proprieta file.



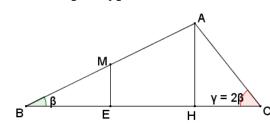
Probar que:

$$\begin{cases}
AC + CE = 3BE \\
AB + AF = 3CF
\end{cases} \Leftrightarrow ABC \text{ es un triángulo heptagonal}$$

Solution proposée par Philippe Fondanaiche

1^{er} question

 1^{er} cas: par hypothèse $\angle ACB = 2 \angle ABC$



Sans perte de généralité, on pose AB = 2.

H est le pied de la hauteur issue de A sur le côté BC.

Comme M est le milieu de AB, E est milieu de BH.

Soit $\angle ABC = \beta$ avec $0 < \beta < \pi/2$. D'où $\angle ACB = 2\beta$.

On a les relations : $BE = cos(\beta) = EH$

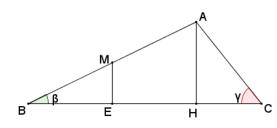
AH = $AC\sin(2\beta)$. D'où $AC = 2\sin(\beta)/\sin(2\beta) = 1/\cos(\beta)$

CH = $ACcos(2\beta) = cos(2\beta)/cos(\beta) = 2cos(\beta) - 1/cos(\beta)$

 $AC + CE = AC + CH + HE = 1/\cos(\beta) + 2\cos(\beta) - 1/\cos(\beta) + \cos(\beta)$

soit $AC = 3\cos(\beta) = 3BE$. c.q.f.d.

$2^{\text{ème}}$ cas: par hypothèse AC + CE = 3BE



On pose $\angle ABC = \beta$ et $\angle ACB = \gamma$

Avec les mêmes notations que précédemment, on a AH = $ACsin(\gamma)$.

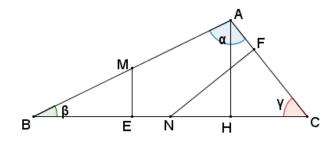
D'où AC = $2\sin(\beta)/\sin(\gamma)$ et CH = $2\sin(\alpha)\cos(\gamma)/\sin(\gamma)$

Il en résulte : $2\sin(\beta)/\sin(\gamma) + 2\sin(\beta)\cos(\gamma)/\sin(\gamma) + \cos(\beta) = 3\cos(\beta)$

D'où $\sin(\beta) + \sin(\beta)\cos(\gamma) = \cos(\beta)\sin(\gamma)$ soit $\sin(\beta) = \sin(\gamma - \beta)$

ce qui donne $\gamma - \beta = \pi - \beta$ ou $\gamma - \pi$ à exclure et $\gamma = 2\beta$. c.q.f.d.

2ème question



On désigne par α, β, γ les trois angles $\angle BAC$, $\angle ABC$ et

 \angle ACB avec $\alpha + \beta + \gamma = \pi$

Par hypothèse AC + CE = 3BE. Donc $\gamma = 2\beta$

AB + AF = 3CF. Donc $\alpha = 2\gamma = 4\beta$.

On en déduit que le triangle ABC est heptagonal avec les trois angles $\beta = \pi/7$, $\gamma = 2\pi/7$ et $\alpha = 4\pi/7$ c.q.f.d.