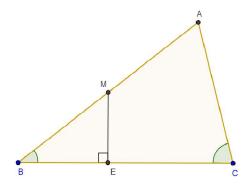
Quincena del 1 al 15 de Marzo de 2020

Propuesto por Miguel-Ángel Pérez García-Ortega, profesor de Matemáticas en el IES "Bartolomé-José Gallardo" de Campanario (Badajoz), a partir de un problema de Ercole Suppa publicado en Perú Geométrico con su permiso (Agradezco a Ercole su predisposición).

Problema 937.-

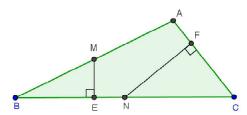
Ejercicio 2

Dado el triángulo ABC, se consideran el punto medio M del segmento AB y su proyección ortogonal E sobre la recta BC, como se muestra en la siguiente figura:



Probar que $AC + CE = 3BE \Leftrightarrow \sphericalangle ACB = 2 \sphericalangle CBA$.

2. Dado un triángulo ABC, se consideran los puntos medios M y N de los segmentos AB y BC, respectivamente y sus respectivas proyecciones ortogonales E y F sobre las rectas BC y AC, tal como se muestra en la siguiente figura:



Probar que $(AC + CE = 3BE) \land (AB + AF = 3CF) \Leftrightarrow ABC$ es un triángulo heptagonal.

Pérez, M. A. (2020): Comunicación personal.

Solución de Saturnino Campo Ruiz, Profesor de Matemáticas jubilado, de Salamanca.

Del triángulo rectángulo ΔBEM se obtiene $\cos B = \frac{2 \cdot BE}{c}$

Llamo CE = x, por tanto BE = a - x, la condición del problema es b + x = 3(a - x), que al resolver nos da $CE = x = \frac{3a-b}{4}$ y por tanto, $BE = a - x = \frac{a+b}{4}$ y $\cos B = \frac{a+b}{2c}$.

Por otra parte, según el teorema del coseno, se tiene $\cos B = \frac{a^2 + c^2 - b^2}{2ac}$.

Simplificando la expresión $\frac{a+b}{2c}=\frac{a^2+c^2-b^2}{2ac}$ llegamos a $c^2-b^2=ab$

$$c^2 - b^2 = ab \qquad (E_1)$$

Por las fórmulas del ángulo doble y el teorema de los senos se tiene ahora

Aplicamos ahora la relación (E_1) y resulta $\frac{ab+b^2}{c^2}=1$, y por tanto $\angle ACB=2\angle CBA$, como queríamos demostrar.

(⇔)

Si sen
$$2B = 2$$
 sen $B \cos B = \sec C \Rightarrow 2 \cdot \cos B = \frac{\sec C}{\sec B} = \frac{c}{b} \Rightarrow c = 2b \cdot \cos B = 2b \cdot \frac{a^2 + c^2 - b^2}{2ac}$

De
$$c = 2b \cdot \cos B$$
 resulta $\cos B = \frac{2 \cdot BE}{c} = \frac{c}{2b} \Rightarrow BE = \frac{c^2}{4b}$

y de
$$c = 2b \cdot \frac{a^2 + c^2 - b^2}{2a}$$
 se sigue $ac^2 = b(a^2 + c^2 - b^2) \Leftrightarrow c^2(a - b) = b(a^2 - b^2) \Rightarrow c^2 = b(a + b)$,

suponiendo $a \neq b$.

$$c^2 = b(a+b) \quad (E_2)$$

Ahora a calcular utilizando esta última expresión:

$$BE = \frac{c^2}{4b} = \frac{b(a+b)}{4b} = \frac{a+b}{4}$$

$$AC + CE = b + (a - BE) = b + a - \frac{c^2}{4b} = \frac{4b^2 + 4ab - c^2}{4b} = \frac{4b^2 + 4ab - b(a+b)}{4b} = \frac{3(a+b)}{4}$$

Por tanto AC + CE = 3BE como queríamos demostrar.

Si a=b y $\sphericalangle ACB=2 \sphericalangle CBA$, tendríamos también $\sphericalangle ACB=\sphericalangle BAC$. Tendríamos un triángulo rectángulo en C e isósceles, donde se verifica trivialmente la propiedad: $CA+CE=\frac{3}{2}a$ y $BE=\frac{a}{2}$.

2.- Es una consecuencia de lo ya demostrado. La expresión de la primera parte, para el vértice B se enunciaría poniendo BA + AF = 3CF, y la conclusión sería que $\angle BAC = 2\angle ACB$. Por tanto, los ángulos de ese triángulo, serían $\beta = \angle CBA$; $\gamma = \angle ACB = 2\beta$ y $\alpha = \angle BAC = 2\gamma = 4\beta$.

La suma de esos ángulos $\beta + 2\beta + 4\beta = 7\beta = 180^\circ$. Se trata de un triángulo heptagonal.