Problema n°938

Sea ABC un triángulo con circuncículo Ω e incentro I.

Una línea ℓ intersecta las líneas AI, BI, y CI en los puntos D, E y F, respectivamente, distintos de los puntos A, B, C, y I.

Las mediatrices de los segmentos AD,BE y CF respectivamente determinan un triángulo Θ .

Muestre que el circuncírculo del triángulo Θ es tangente a Ω .

Mathematical Ashes (2019): UK-Australia, problema 3.

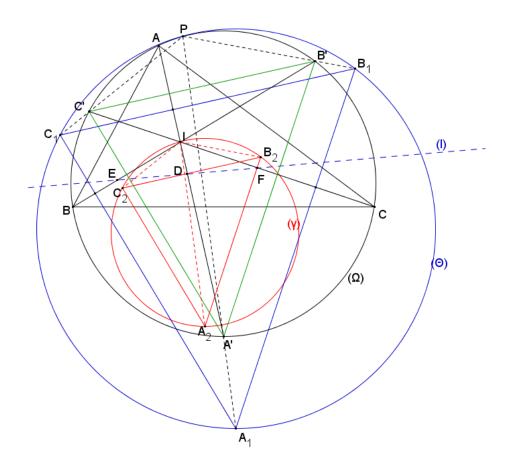
Solution proposée par Philippe Fondanaiche

On désigne par :

A',B' et C' les points d'intersection des bissectrices [AI],[BI] et [CI] avec le cercle (Ω) .

 A_1,B_1 et C_1 les points d'intersection des médiatrices des segments BE,CF et AD qui déterminent le triangle $A_1B_1C_1$ et son cercle circonscrit (Θ)

A₂ ,B₂ et C₂ les points d'intersection des perpendiculaires passant par E,F et D aux bissectrices [BI],[CI] et [CI]



Lemme n°1: les triangles A'B'C', A₁B₁C₁ et A₂B₂C₂ sont homothétiques.

Démonstration : par construction les droites $[B_1C_1]$ et $[B_2C_2]$ sont perpendiculaires à la bissectrice [AI]. Par ailleurs B' et C' étant les milieux des arcs AC et AB ne contenant pas B et C, la droite [B'C'] est médiatrice du segment AI. Les droites [B'C'], $[B_1C_1]$ et $[B_2C_2]$ sont donc parallèles. Il en est de même des droites [C'A'], $[C_1A_1]$ et $[C_2A_2]$ et des droites [A'B'], $[A_1B_1]$ et $[A_2B_2]$.

Il en résulte que le point P à l'intersection des droites [A'A₁], [B'B₁] et [C'C₁] est le centre d'homothétie des triangles A'B'C' et A₁B₁C₁.

Pour démontrer que le cercle (Θ) est tangent au cercle (Ω) , il suffit de prouver que le point P appartient au cercle (Ω) aussi bien qu'au cercle (Θ) .

Lemme n°2: les quatre points A2,B2,C2 et I sont cocycliques.

Démonstration : par construction la droite (l) qui contient les points D,E,F est la droite de Simson du point I relativement au triangle $A_2B_2C_2$. Les quatre points A_2,B_2,C_2 et I sont alors sur un même cercle (γ) . On en déduit les relations d'angles $\angle A_2C_2B_2 = \angle A_2IB_2$.

Lemme n°3: on a les égalités vectorielles $\overrightarrow{IA_2} = 2\overrightarrow{A'A_1}$, $\overrightarrow{IB_2} = 2\overrightarrow{B'B_1}$ et $\overrightarrow{IC_2} = 2\overrightarrow{C'C_1}$.

Démonstration : il suffit de démontrer la première relation $\overrightarrow{IA_2} = 2\overrightarrow{A'A_1}$.

On désigne par d_A , d_B , et d_C les distances qui séparent respectivement les droites [B'C'] et $[B_1C_1,]$ puis les droites [C'A'] et $[C_1A_1]$ et enfin les droites [A'B'] et $[A_1B_1]$,

Comme les droites [B'C'] et [B₁C₁] sont respectivement médiatrices de AI et de AD, on a ID = $2d_A$. De la même manière on a IE = $2d_B$ et IF = $2d_C$.

Le vecteur \overrightarrow{IA}_2 se projette sur les bissectrices [BI] et [CI] en IE = $2d_B$ et IF = $2d_C$ tandis que le vecteur $\overrightarrow{A'A}_1$ se projette sur ces mêmes droites en deux segments de longueurs d_B et d_C .

L'angle que font entre eux les vecteurs $\overrightarrow{A'A_1}$ et $\overrightarrow{B'B_1}$ n'est autre que $\angle A'PB'$. Il en résulte que $\angle A'PB'$ est égal à l'angle que font entre eux les vecteurs $\overrightarrow{IA_2}$ et $\overrightarrow{IB_2} = \angle A_2IB_2$..

On a les relations d'angles \angle A'PB' = \angle A₂IB₂ = \angle A₂C₂B₂ = \angle A'C'B'. Le point P appartient au cercle (Ω) de même qu'à partir de la relation d'angles \angle A₁PB₁ = \angle A₁C₁B₁, P appartient au cercle (Θ) . Par l'homothétie de centre P et de rapport PA₁/PA'= PB₁/PB' = PC₁/PC', le cercle (Θ) est donc le transformé du cercle (Ω)

Conclusion : Les cercles (Θ) et (Ω) sont tangents au point P.