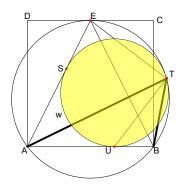
Pr. Cabri 939

Enunciado

Out[281]=



ABCD es un cuadrado cualquiera. DE=EC w es el incírculo del A-triángulo mixtilineo ABE S, T, U son sus puntos de contacto.

Demostrar que

- * TE y TU perpendiculares, ∠ATU=∠UTB así que (TE, TU, TA, TB) es un haz armónico
- * $TU^2 = TE^2 + TB^2 TE.TB$
- * $\frac{1}{TA} + \frac{1}{TB} = \frac{2}{TE}$
- * $\frac{\text{TA}}{\text{TE}} = \frac{\text{AS}}{\text{SE}} = \frac{\text{AE}}{\text{AS}} = \phi$

Propuesto por Ercole Suppa

Solución

de César Beade Franco

Consideremos el cuadrado de vértices A(-1,-1), B(1,-1), C(1,1) y D(-1,1).

Entonces E=(0,1) y w es una circunferencia de Apolonio de las rectas AB y AE y la circunferencia ABE de centro (0, $-\frac{1}{4}$) y radio $\frac{5}{4}$.

Así obtenemos w[($\frac{1}{2}$ (3 - $\sqrt{5}$), $\frac{1}{2}$ (-7 + 3 $\sqrt{5}$)), $\frac{1}{2}$ (-5 + 3 $\sqrt{5}$)] (1).

Los puntos de contacto de esta circunferencia con el triángulo mixtilíneo son

S(
$$\frac{1}{2}$$
(-3+ $\sqrt{5}$), -2+ $\sqrt{5}$), T($\frac{1}{6}$ (5+ $\sqrt{5}$), $\frac{1}{3}$ (-2+ $\sqrt{5}$)) y U($\frac{1}{2}$ (3- $\sqrt{5}$), -1).

* TE.TU=(T-E).(T-U)=(
$$\frac{1}{6}$$
(5+ $\sqrt{5}$), $\frac{1}{3}$ (-5+ $\sqrt{5}$)).($\frac{2}{3}$ (-1+ $\sqrt{5}$), $\frac{1}{3}$ (1+ $\sqrt{5}$))=0 \Leftrightarrow TE y TU perp.

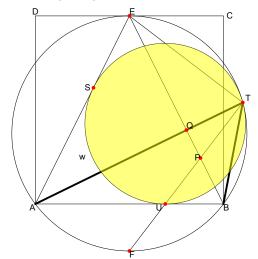
De aquí deducimos que TU corta a la circunferencia AEB en F punto diametralmente opuesto de E y punto medio del arco AB, así que TU es la bisectriz interior de ∠ATB y TE la exterior. Así que la cuaterna (E, P=TU∩EB, Q=TA∩EB, B) sobre la recta EB es armónica y por tanto el haz (TE, TU, TA, TB) También lo es.

**
$$TE^2+TB^2-TE.TB = \frac{2}{3} (5 - \sqrt{5}) = TU^2$$

$$\frac{1}{TA} + \frac{1}{TB} = \frac{2}{TE} \Leftrightarrow (TA + TB)TE = 2TA.TB.$$

Un cálculo nos da (TA+TB)TE = $\frac{5}{3}$ (1 + $\sqrt{5}$) = 2TA.TB

$$\frac{TA}{TE} = \frac{|A-T|}{|E-T|} = \frac{\left| \frac{(-1,-1)-\frac{1}{6}\left(5+\sqrt{5}\right),\frac{1}{3}\left(-2+\sqrt{5}\right)\right|}{\left| \frac{(0,1)-\frac{1}{6}\left(5+\sqrt{5}\right),\frac{1}{3}\left(-2+\sqrt{5}\right)\right|} = \frac{1}{2} \left(1+\sqrt{5}\right) = \phi$$
Y de manera análoga se obtiene $\frac{AS}{SE} = \frac{AE}{AS} = \phi$



Out[276]=

(1) Calculada con *Mathematica*, lo mismo que los puntos de contacto.