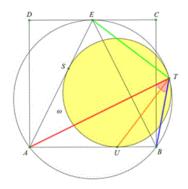
Problema n°939

Propuesto por Ercole Suppa. Comunicación personal

- \star ABCD any square, DE=EC
- $\star \omega = A \text{mixtilinear incircle of } ABE$
- \star S, T, U touch points

Prove that:

- TE ⊥ TU, ∠ATU = ∠UTB so (TE, TU, TA, TB) is an harmonic bundle
- $\bullet \ TU^2 = TE^2 + TB^2 TE \cdot TB$
- $\bullet \frac{1}{TA} + \frac{1}{TB} = \frac{2}{TE}$
- $\frac{TA}{TE} = \frac{AS}{SE} = \frac{AE}{AS} = \varphi$ (golden ratio)



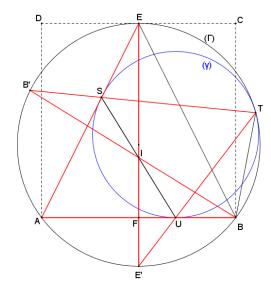
ERCOLE SUPPA 28/2/2020

Solution proposée par Philippe Fondanaiche

Soient:

- (Γ) le cercle circonscrit au triangle isocèle EAB de sommet E,
- (γ) le cercle tangent aux côtés EA et AB et à (Γ) respectivement aux points U,S et T.

I le centre du cercle inscrit du triangle EAB.

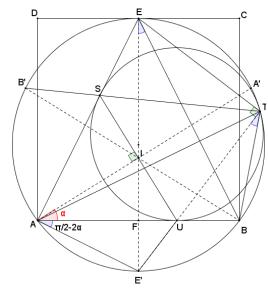


Lemme : le point I est le milieu de la corde US dans le cercle (γ)

Démonstration : on trace la droite TU qui coupe le cercle (Γ) au point E' et la droite TS qui coupe ce même cercle au point B'.

D'après le théorème de la bissectrice intérieure (Jean-Louis Aymé - <u>A new mixtilinear incircle adventure I</u> pages 9 et 10), on admet que le point E' est le milieu de l'arc AB qui ne contient pas E de même que B' est le milieu de l'arc AE qui ne contient pas B. Les droites EE' et BB' sont les bissectrices des angles en E et B du triangle EAB et passent donc par le point I.

D'après <u>le théorème de l'hexagramme mystique de Pascal</u> appliqué au polygone EABB'TE' (tracé en rouge), les points U,S et I sont alignés et comme I est sur la bissectrice de l'angle en A, I est milieu de US.



On revient à la figure de l'énoncé dans laquelle on désigne par F le milieu du côté AB et A' à l'intersection de la bissectrice AI avec le cercle (Γ) . A' est donc le milieu de l'arc BE ne contenant pas A.

Sans perte de généralité, on pose AB = BC = CD = DA = 2.

D'où AF = 1, AE = BE =
$$\sqrt{5}$$
, FE'/AF = FA/FE = 1/2. FE'=1/2.

$$\angle BAA' = \alpha$$
. D'où $\angle AEB = 2 \angle BEE' = \pi - 4\alpha$ et $\angle BAE' = \pi/2 - 2\alpha$

D'où $tan(2\alpha) = AF/FE' = 2$. Or $tan(2\alpha) = tan(\alpha)/(1 - tan^2(\alpha))$.

On pose $t = tan(\alpha)$. D'où l'équation $t^2 + t - 1 = 0$ qui a pour racine

$$t = (1 + \sqrt{5})/2 = \varphi = \text{nombre d'or.}$$

Les triangles AIU et AIS sont rectangles. On en déduit successivement :

$$AU = AS = \sqrt{5}/\phi$$
, $BU = AB - AU = 1/\phi$, $SE = AE - AS = \sqrt{5}/\phi^2$.

Comme \angle BAE' = \angle BTE', les triangles AUE' et TUB sont semblables. D'où les relations (**R**):

TU/TB = AU/AE' = 2/
$$\phi$$
, TA/TE = AS/SE = ϕ , TA/TB = $\sqrt{5}$, TE/TB = $\sqrt{5}$ / ϕ

On dispose de tous les éléments pour répondre aux quatre questions de l'énoncé :

- 1) TE est perpendiculaire à TU et (TE,TU,TA,TB) constitue un faisceau harmonique. EE' médiatrice de AB est diamètre du cercle (Γ). Le triangle ETE' est rectangle en T. TE est donc perpendiculaire à TU. Comme TE' et TB' sont respectivement bissectrices des angles \angle ATB et \angle ATE et que \angle ETE' = $\pi/2$, (TE,TU,TA,TB) constitue un faisceau harmonique.
- 2) $TU^2 = TE^2 + TB^2 TE.TB$ En divisant les deux membres de cette relation par TB^2 , on obtient $(TU/TB)^2 = (TE/TB)^2 + 1 - (TE/TB)$. D'après les relations (**R**) obtenues supra, on a $(TU/TB)^2 = 4/\phi^2$ et $(TE/TB)^2 + 1 - (TE/TB) = 5/\phi^2 + 1 - \sqrt{5}/\phi$, ce qui revient à comparer $1/\phi^2$ à $\sqrt{5}/\phi - 1$. Ces deux termes sont égaux à $(\sqrt{5} - 1)^2/4$. C.q.f.d.
- 3) 1/TA + 1/TB = 2/TE. En multipliant les deux membres de cette relation par TE, on obtient TE/TA + TE/TB = 2. Or d'après les relations (R) TE/TA = 1/ ϕ et TE/TB = $\sqrt{5}$ / ϕ . D'où TE/TA + TE/TB = $(1 + \sqrt{5})$ / ϕ = 2. C.q.f.d.
- 4) TA/TE = AS/SE = AE/AS = ϕ Les relations (R) donnent TA/TE = ϕ . Dans le triangle ATE, TS est la bissectrice issue de T. D'où AS = SE) TA/TE = ϕ . Par ailleurs AS = $\sqrt{5}$ / ϕ . Comme AE = $\sqrt{5}$, on en déduite AE/AS = ϕ . C.q.f ;d.