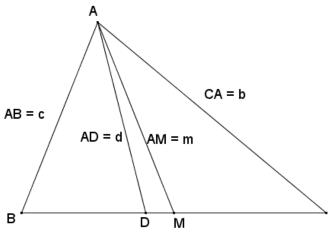
Problema 944.

Construir un triángulo conociendo b +c =s, AMa=m (mediana), ADa=d(bisectriz interna) Lopes, L. (2020): Comunicación personal.

Solution proposée par Philippe Fondanaiche



Les côtés du triangle ABC ont pour dimensions :

BC = a, CA = b et AB = c

Par hypothèse on connaît :

AC + ABC = b + c = s

AD (bissectrice issue de A) = d

AM (médiane issue de A) = m

On pose BD = a_c et CD = a_b avec $a = a_b + a_c$

BC = a_b BD = a_c , CD = a_b

On va déterminer a,b et c en fonction des paramètres d,m et s

Lemme n°1: la longueur de la bissectrice AD s'exprime en fonction des côtés du triangle ABC selon la formule $\mathbf{d}^2 = \mathbf{bc}[(\mathbf{b} + \mathbf{c})^2 - \mathbf{a}^2]/(\mathbf{b} + \mathbf{c})^2$

Démonstration. On a les relations $a_c/c = a_b/b = a/(b+c)$. D'où $a_b = ab/(b+c)$ et $a_c = ac/(b+c)$ D'après le théorème de Stewart $b^2.BD + c^2.CD = a.(d^2+BD.CD)$, soit $b^2.a_c + c^2.a_b = a(d^2.a + a_b a_c)$ ou encore $(b^2c + bc^2)/(b+c) = d^2 + a^2.bc/(b+c)^2$. D'où la formule supra. C.q.f.d.

Lemme n°2 : la longueur de la médiane issue de A est donnée par la formule supposée connue $\mathbf{m}^2 = (\mathbf{b}^2 + \mathbf{c}^2)/2 - \mathbf{a}^2/4$

On en déduit $d^2 = bc[1 - s^2/a^2]$ et $4m^2 = (2s - 4bc - a^2)$.

Il suffit d'éliminer bc des deux équations précédentes et en posant $x = a^2$, on obtient une équation du second degré en x qui prouve que x et donc a qui en est la racine carrée sont constructibles à la règle et au compas. soit $x^2 - (3s^2 - 4m^2)x + s^2(2s^2 - 4m^2) = 0$

Le discriminant Δ de cette équation est égal à $(s^2 - 4m^2)^2 + 16s^2d^2 > 0$

La valeur du côté a obéit alors à la formule $a = \sqrt{\frac{3s^2 - 4m^2 - \sqrt{\Delta}}{2}}$

Par ailleurs on connaît la somme b + c = s et le produit $bc = s^2d^2/(s^2 - a^2)$. Les côtés b et c sont alors les racines d'une équation du second degré de la forme $x^2 - sx + s^2d^2/(s^2 - a^2)$. = 0 et sont donc constructibles à la règle et au compas.

Les trois côtés a,b et c étant connus, la construction du triangle ABC est immédiate.