Propuesto por Ángel Montesdeoca Delgado, estudioso de Geometría.

Problema 945.-

Dado un triángulo ABC de incentro I, sean D, E, F las reflexiones de I en los lados BC, CA, AB, respectivamente. Las intersecciones de la altura por A con DF, DE son A_b y A_c , respectivamente. Las intersecciones de la altura por B con ED, EF son B_c y B_a , respectivamente. Las intersecciones de la altura por C con EC, EC son EC y EC y EC intersecciones de la altura por EC con EC con EC y EC intersecciones de la altura por EC con EC y EC intersecciones de la altura por EC con EC y EC demostrar que una de estas longitudes es la suma de las otras dos.

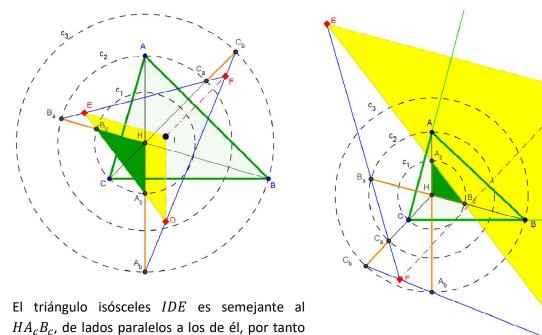
Esta propiedad también se tiene cuando se sustituye el incentro por cada exincentro.

Montesdeoca, A. (2020): Comunicación personal.

 $HA_c = HB_c$ y de forma similar $HB_a = HC_a$ y

 $HA_b = HC_b$.

Solución de Saturnino Campo Ruiz, Profesor de Matemáticas jubilado, de Salamanca.



Los seis puntos A_b y A_c ; B_c y B_a ; C_a y C_b , están sobre tres circunferencias concéntricas c_i , de centro H y cuyos radios r_i verifican las relaciones $r_3 - r_2 = C_a C_b$; $r_2 - r_1 = B_a B_c$ y $r_3 - r_1 = A_b A_c$ y a partir de ellas es $(r_3 - r_2) + (r_2 - r_1) = (r_3 - r_1)$ que da la conclusión al problema en su inicial planteamiento.

Si se sustituye el incentro I por el excentro E_c se tiene de forma similar que los triángulos E_cDE y HA_cB_c son semejantes por ser de ados paralelos y por tanto, también isósceles, e igual que antes, de ello deducimos que $HA_c=HB_c$ y etc... todo lo demás exactamente igual. En este caso se tienen $A_bA_c=r_3+r_1$ es la suma de $B_aB_c=r_2+r_1$ y $C_aC_b=r_3-r_2$.