Propuesto por Miguel-Ángel Pérez García-Ortega, profesor de Matemáticas en el IES "Bartolomé-José Gallardo" de Campanario (Badajoz)
Problema 1003

Para un triángulo ABC, se consideran los radios  $r_b$  y  $r_c$  de las circunferencias que pasan por

el punto A y son tangentes a la recta BC en los puntos B y C, respectivamente. Dado un segmento BC,

determinar el lugar geométrico que debe describir el punto A para que:

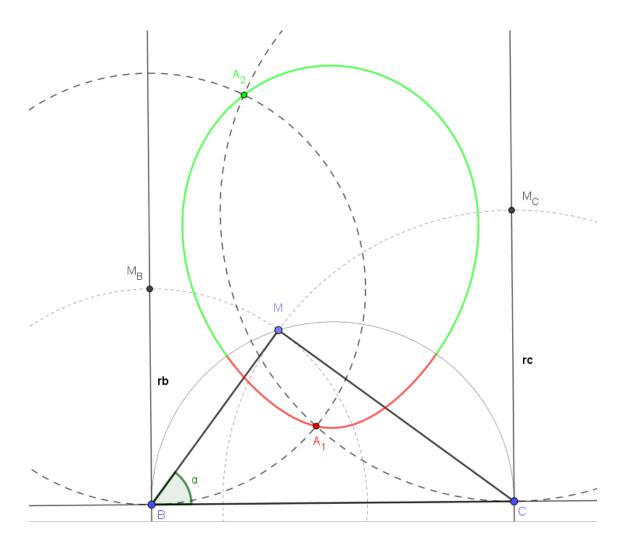
1) 
$$r_b^2 + r_c^2 = BC^2$$

2) 
$$r_b r_c = BC^2$$

$$3)r_b / r_c = BC o r_c / r_b = BC$$

4) 
$$|r_b - r_c| = BC$$

Pérez M. A. (2021): Comunicación personal.


## Solución propuesta por Antonio Casas Pérez

1)  $rb^2 + rc^2 = BC^2$ 

Si trazamos la circunferencia con diámetro el segmento BC, para cualquier punto M de esta, los segmentos MB y MC forman ángulo recto y así MB<sup>2</sup>+MC<sup>2</sup>=BC<sup>2</sup>. Los segmentos MB y MC son pues radios de círculos cuya intersección da los puntos A buscados.

Los puntos  $M_B$  y  $M_C$  son centros de círculos tangentes a BC en los puntos B y C y la intersección de tales círculos dan los puntos buscados.

En la figura que sigue, presentamos tal construcción que da los puntos  $A_1$  y  $A_2$  (rojo y verde) que describen los lugares señalados. La construcción da cualquier punto del lugar eligiendo M adecuadamente, por lo que gráficamente el problema queda resuelto.



Si se pretende una expresión analítica del lugar, observamos que la curva no es usual por lo que su ecuación puede ser complicada. En todo caso podríamos hacer lo siguiente:

Podemos suponer B=(-1,0) y C=(1,0). Entonces, si M=(x,y), tendremos  $x^2+y^2=1$ ;  $M_B=(-1,2\cos\alpha)$ ,  $M_C=(1,2\sin\alpha)$ , y por tanto  $A_1$  y  $A_2$  son las soluciones del sistema

$$(x + 1)^2 + (y - 2\cos\alpha)^2 = 4\cos^2\alpha$$
  
 $(x - 1)^2 + (y - 2\sin\alpha)^2 = 4\sin^2\alpha$ 

Adjunto operaciones, hechas con Maple, para eliminar  $\alpha$  y dan la ecuación del lugar

$$| ec1 = (x+1)^2 + (y-2 \cdot \cos(a))^2 = 4 \cdot \cos^2(a)$$

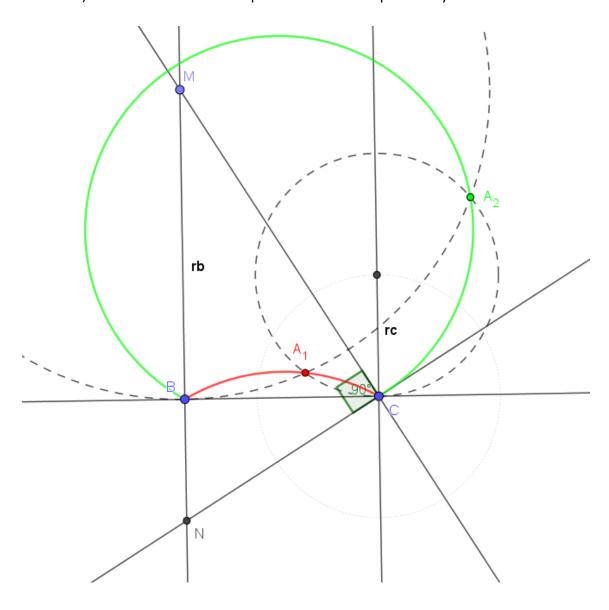
$$(x+1)^2 + (y-2 \cdot \sin(a))^2 = 4 \cdot \sin^2(a)$$

$$(x-1)^2 + (y-2 \cdot \sin(a))^2 = 4 \cdot \sin^2(a)$$

$$(x-1)^2 + (y-2 \cdot \sin(a))^2 = 4 \cdot \sin(a)^2$$

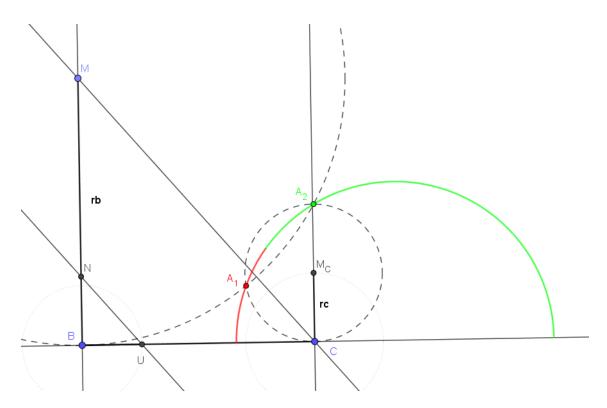
$$(x-1)^2 + (y-2 \cdot \sin(a))^2 = 4 \cdot \sin(a)^2$$

$$eval(ec2, a = valora)$$


$$(x-1)^2 + \left(y - \frac{1}{2} \sqrt{16 - \frac{(x^2 + 2x + 1 + y^2)^2}{y^2}}\right)^2 = 4 - \frac{1}{4} \cdot \frac{(x^2 + 2x + 1 + y^2)^2}{y^2}$$

## 2) rb \* rc =BC<sup>2</sup>

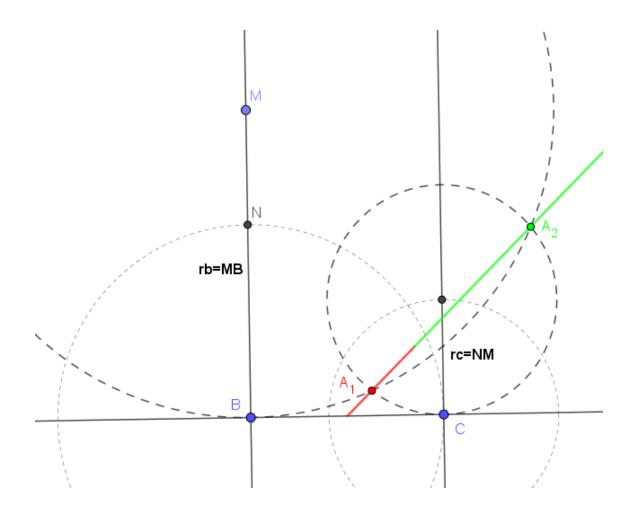
En este caso, para cada punto M de la perpendicular a BC por B, le hacemos corresponder un punto N en dicha recta, de forma que el ángulo MCN sea recto. Entonces, por el teorema de la altura


$$BM*BN = BC^2$$

Esto conduce a los puntos  $A_1$  y  $A_2$  y al lugar buscado, en este caso (mirando las simetrías) son dos circunferencias que se cortan en los puntos B y C.



## 3) rb/rc =BC o rc/rb=BC


En este caso, para cada punto M de la perpendicular a BC por B, trazamos la recta MC, el punto U en el segmento BC de forma que BU=1 y la paralela a MC por U. Esto determina el punto N. Hacemos  $CM_C = BN$  y se obtienen  $A_1$  y  $A_2$ . El lugar (mirando la simetría) es una circunferencia como indica la figura.



## 4) |rb-rc|=BC

Consideremos el caso rb>rc.

En este caso, para cada punto M de la perpendicular a BC por B, trazamos la circunferencia de centro B y radio BC. El punto N da el segmento NM que determina rc con rc=NM y los puntos  $A_1$  y  $A_2$  del lugar, que resulta ser la semirrecta con origen el punto medio de BC y que forma  $45^\circ$  con la recta BC.



Nótese que en todos los casos, las circunferencias son tangentes cuando A es uno de los dos puntos que separan las gráficas roja y verde.