Propuesto por Miguel-Ángel Pérez García-Ortega, profesor de Matemáticas en el IES "Bartolomé-José Gallardo" de Campanario (Badajoz)
Problema 1003

Para un triángulo ABC, se consideran los radios r_b y r_c de las circunferencias que pasan por

el punto A y son tangentes a la recta BC en los puntos B y C, respectivamente. Dado un segmento BC,

determinar el lugar geométrico que debe describir el punto A para que:

1)
$$r_b^2 + r_c^2 = BC^2$$

2)
$$r_b r_c = BC^2$$

$$3)r_b / r_c = BC o r_c / r_b = BC$$

4)
$$|r_b - r_c| = BC$$

Pérez M. A. (2021): Comunicación personal.

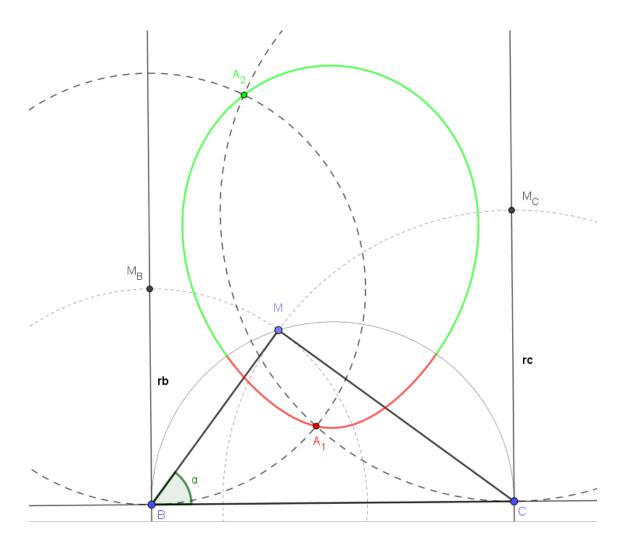
Solución propuesta por Antonio Casas Pérez

1) $rb^2 + rc^2 = BC^2$

Si trazamos la circunferencia con diámetro el segmento BC, para cualquier punto M de esta, los segmentos MB y MC forman ángulo recto y así MB²+MC²=BC². Los segmentos MB y MC son pues radios de círculos cuya intersección da los puntos A buscados.

Los puntos M_B y M_C son centros de círculos tangentes a BC en los puntos B y C y la intersección de tales círculos dan los puntos buscados.

En la figura que sigue, presentamos tal construcción que da los puntos A_1 y A_2 (rojo y verde) que describen los lugares señalados. La construcción da cualquier punto del lugar eligiendo M adecuadamente, por lo que gráficamente el problema queda resuelto.



Si se pretende una expresión analítica del lugar, observamos que la curva no es usual por lo que su ecuación puede ser complicada. En todo caso podríamos hacer lo siguiente:

Podemos suponer B=(-1,0) y C=(1,0). Entonces, si M=(x,y), tendremos $x^2+y^2=1$; $M_B=(-1,2\cos\alpha)$, $M_C=(1,2\sin\alpha)$, y por tanto A_1 y A_2 son las soluciones del sistema

$$(x + 1)^2 + (y - 2\cos\alpha)^2 = 4\cos^2\alpha$$

 $(x - 1)^2 + (y - 2\sin\alpha)^2 = 4\sin^2\alpha$

Adjunto operaciones, hechas con Maple, para eliminar α y dan la ecuación del lugar

$$| ec1 = (x+1)^2 + (y-2 \cdot \cos(a))^2 = 4 \cdot \cos^2(a)$$

$$(x+1)^2 + (y-2 \cdot \sin(a))^2 = 4 \cdot \sin^2(a)$$

$$(x-1)^2 + (y-2 \cdot \sin(a))^2 = 4 \cdot \sin^2(a)$$

$$(x-1)^2 + (y-2 \cdot \sin(a))^2 = 4 \cdot \sin(a)^2$$

$$(x-1)^2 + (y-2 \cdot \sin(a))^2 = 4 \cdot \sin(a)^2$$

$$eval(ec2, a = valora)$$

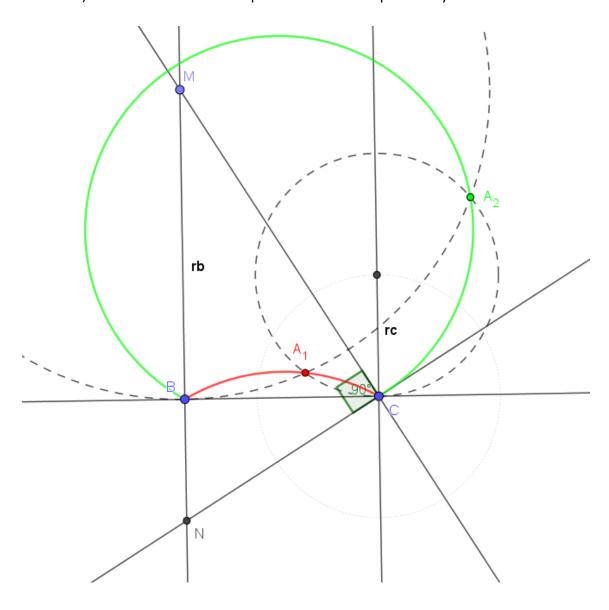
$$(x-1)^2 + \left(y - \frac{1}{2} \sqrt{16 - \frac{(x^2 + 2x + 1 + y^2)^2}{y^2}}\right)^2 = 4 - \frac{1}{4} \cdot \frac{(x^2 + 2x + 1 + y^2)^2}{y^2}$$

2) rb * rc =BC²

En este caso, para cada punto M de la perpendicular a BC por B, le hacemos corresponder un punto N en dicha recta, de forma que el ángulo MCN sea recto. Entonces, por el teorema de la altura

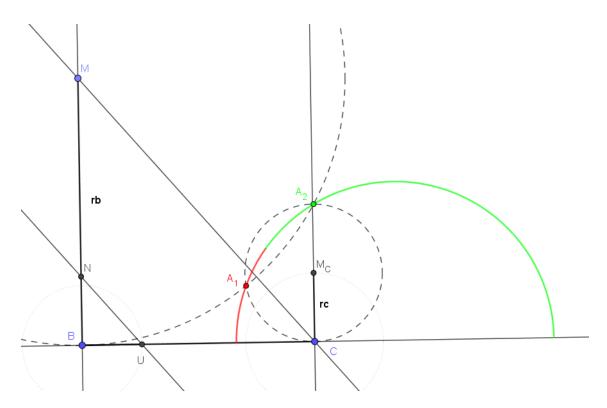
$$BM*BN = BC^2$$

Esto conduce a los puntos A_1 y A_2 y al lugar buscado, en este caso (mirando las simetrías) son dos circunferencias que se cortan en los puntos B y C.



3) rb/rc =BC o rc/rb=BC

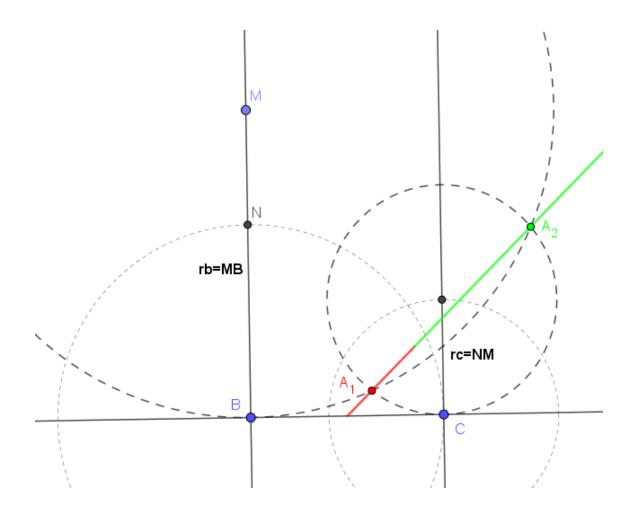
En este caso, para cada punto M de la perpendicular a BC por B, trazamos la recta MC, el punto U en el segmento BC de forma que BU=1 y la paralela a MC por U. Esto determina el punto N. Hacemos $CM_C = BN$ y se obtienen A_1 y A_2 . El lugar (mirando la simetría) es una circunferencia como indica la figura.



4) |rb-rc|=BC

Consideremos el caso rb>rc.

En este caso, para cada punto M de la perpendicular a BC por B, trazamos la circunferencia de centro B y radio BC. El punto N da el segmento NM que determina rc con rc=NM y los puntos A_1 y A_2 del lugar, que resulta ser la semirrecta con origen el punto medio de BC y que forma 45° con la recta BC.



Nótese que en todos los casos, las circunferencias son tangentes cuando A es uno de los dos puntos que separan las gráficas roja y verde.