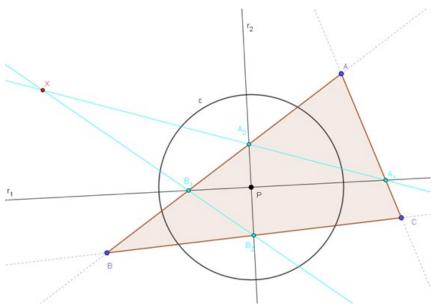
Edición veraniega del 16 de Junio al 31 de Agosto de 2021.

Propuesto por Antonio Casas Pérez, profesor jubilado del Departamento de Matemática Aplicada al Urbanismo, a la Edificación y al Medio Ambiente, Universidad Politécnica de Madrid

Problema 1005

Sea ABC un triángulo, P un punto del plano y c una circunferencia con centro en P. Se consideran r_1, r_2 diámetros perpendiculares de c, los puntos A_1, A_2 intersecciones respectivas de tales diámetros con los lados (o sus prolongaciones) que parten del vértice A y los puntos B_1, B_2 intersecciones respectivas de tales diámetros con los lados (o sus prolongaciones) que parten del vértice B.

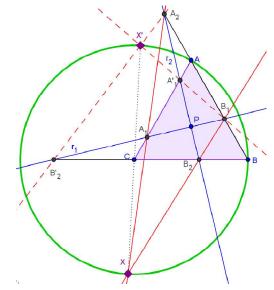
Hallar el lugar geométrico de los puntos X intersección de las rectas A_1A_2 y B_1B_2 .



Casas, A. (2021): Comunicación personal.

Solución de Saturnino Campo Ruiz, Profesor de Matemáticas jubilado, de Salamanca.

Supongamos que tomamos para r_1 la recta AP. Los puntos A_1 y B_1 son el propio A. Cualesquiera que sean B_1 , B_2 , las rectas A_1A_2 y B_1B_2 concurren en A, y en consecuencia, el vértice A es un punto del lugar geométrico buscado.



El mismo razonamiento da que B también es un punto del lugar.

La circunferencia centrada en P no es necesaria, basta con tomar dos rectas del haz P^* de las que pasan por P que sean perpendiculares. Incluso nos atrevemos a creer que bastaría tener una involución de rectas de vértice P.

Es conocido que dado un triángulo y un punto de su plano no situado sobre ningún lado, existen homologías que lo transforman en otro equilátero y con el punto dado como baricentro. Eligiendo el homólogo de un vértice la homología es única (Barr 167, primera quincena de mayo de 2004).

Por eso vamos a considerar que ABC es un triángulo equilátero de lado 2, vértices $A(1,\sqrt{3})$; B(2,0); C(0,0) y baricentro $P(1,\frac{1}{\sqrt{3}})$.

Con estos datos tenemos que la recta AB es $y=-\sqrt{3}(x-2)$; la AC es $y=\sqrt{3}x$; la BC es y=0.

Sea r_1 la recta de pendiente m dada por $y=\frac{1}{\sqrt{3}}+m(x-1)$; su perpendicular es la recta r_2 de ecuación $y=\frac{1}{\sqrt{3}}-\frac{1}{m}(x-1)$.

Calculamos los elementos que definen el lugar geométrico.

El punto
$$A_1 = r_1 \cap A\mathcal{C} = \left(\frac{\sqrt{3}/3(\sqrt{3}m-1)}{m-\sqrt{3}}, \frac{\sqrt{3}m-1}{m-\sqrt{3}}\right)$$
, $B_1 = r_1 \cap AB = \left(\frac{\sqrt{3}/3(\sqrt{3}m+5)}{m+\sqrt{3}}, \frac{\sqrt{3}m+1}{m+\sqrt{3}}\right)$, $A_2 = r_2 \cap BA$ se obtiene de B_1 cambiando m por $-\frac{1}{m}$, $A_2 = \left(\frac{\sqrt{3}/3(5m-\sqrt{3})}{\sqrt{3}m-1}, \frac{m-\sqrt{3}}{\sqrt{3}m-1}\right)$. Y por último el punto $B_2 = r_2 \cap B\mathcal{C} = \left(\frac{\sqrt{3}m}{3} + 1, 0\right)$.

Ahora formamos las rectas A_1A_2 y B_1B_2 cuya intersección es un punto X del lugar geométrico buscado.

$$r_{\{A_1A_2\}} = \begin{vmatrix} x & y & 1 \\ \frac{\sqrt{3}/3(\sqrt{3}m-1)}{m-\sqrt{3}} & \frac{\sqrt{3}m-1}{m-\sqrt{3}} & 1 \\ \frac{\sqrt{3}/3(5m-\sqrt{3})}{\sqrt{3}} & \frac{m-\sqrt{3}}{2} & 1 \end{vmatrix} = 0; \qquad \qquad r_{\{B_1B_2\}} = \begin{vmatrix} x & y & 1 \\ \frac{\sqrt{3}/3(\sqrt{3}m+5)}{m+\sqrt{3}} & \frac{\sqrt{3}m+1}{m+\sqrt{3}} & 1 \\ \frac{\sqrt{3}m}{2} + 1 & 0 & 1 \end{vmatrix} = 0$$

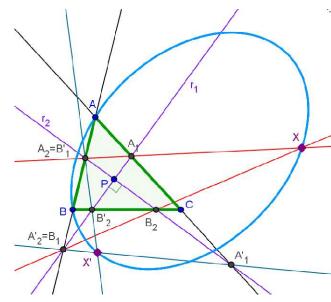
$$r_{\{B_1B_2\}} = \begin{vmatrix} x & y & 1\\ \frac{\sqrt{3}/3(\sqrt{3}m+5)}{m+\sqrt{3}} & \frac{\sqrt{3}m+1}{m+\sqrt{3}} & 1\\ \frac{\sqrt{3}m}{3}+1 & 0 & 1 \end{vmatrix} = 0$$

Resolviendo el sistema formado por estas dos ecuaciones se obtiene el punto

$$X = \left(\frac{m^2 - 2\sqrt{3}m - 1}{m^2 + 1}, \frac{(m - \sqrt{3})(\sqrt{3}m + 1)}{m^2 + 1}\right)$$

Las rectas r_1 y r_2 son intercambiables, lo que significa que si en X cambiamos m por $-\frac{1}{m}$ obtendremos otro punto del lugar.

Hecho esto se obtiene X' = -X, que en principio resulta sorpren-



La longitud del vector CX es

$$|CX|^2 = \frac{\left(m^2 - 2\sqrt{3}m - 1\right)^2 + \left(m - \sqrt{3}\right)^2(\sqrt{3}m + 1)^2}{(m^2 + 1)^2} = 4$$

Por tanto, se trata de una circunferencia de centro el origen de coordenadas, es decir, el punto C.

Como sabemos que A y B son puntos de ese lugar éste es la circunferencia centrada en C y de radio el lado del triángulo equilátero.

Volviendo a los datos iniciales por la homología inversa tenemos que el lugar geométrico buscado es una cónica que pasa por A y